Applied Physics A

, 124:232 | Cite as

Effects of annealing temperature on the H2-sensing properties of Pd-decorated WO3 nanorods

  • Sangmin Lee
  • Woo Seok Lee
  • Jae Kyung Lee
  • Soong Keun Hyun
  • Chongmu Lee
  • Seungbok Choi
Article
  • 57 Downloads

Abstract

The temperature of the post-annealing treatment carried out after noble metal deposition onto semiconducting metal oxides (SMOs) must be carefully optimized to maximize the sensing performance of the metal-decorated SMO sensors. WO3 nanorods were synthesized by thermal evaporation of WO3 powders and decorated with Pd nanoparticles using a sol–gel method, followed by an annealing process. The effects of the annealing temperature on the hydrogen gas-sensing properties of the Pd-decorated WO3 nanorods were then examined; the optimal annealing temperature, leading to the highest response of the WO3 nanorod sensor to H2, was determined to be 600 °C. Post-annealing at 600 °C resulted in nanorods with the highest surface area-to-volume ratio, as well as in the optimal size and the largest number of deposited Pd nanoparticles, leading to the highest response and the shortest response/recovery times toward H2. The improved H2-sensing performance of the Pd-decorated WO3 nanorod sensor, compared to a sensor based on pristine WO3 nanorods, is attributed to the enhanced catalytic activity, increased surface area-to-volume ratio, and higher amounts of surface defects.

Notes

Acknowledgements

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2010–0020163 and 2015R1D1A1A01057029).

References

  1. 1.
    X. Liu, J. Zhang, X. Guo, S. Wu, S. Wang, Nanoscale 2, 1178 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    X. Liu, J. Zhang, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, J. Mater. Chem. 21, 349 (2011)CrossRefGoogle Scholar
  3. 3.
    X. Liu, J. Zhang, T. Yang, X. Guo, S. Wu, S. Wang, Sens. Actuators B 156, 918 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, X. Liu, M. Xu, X. Guo, S. Wu, S. Zhang, S. Wang, Sens. Actuators B 147, 185 (2010)CrossRefGoogle Scholar
  5. 5.
    S. Park, J. Jun, H. Kim, C. Lee, Solid State Commun. 149, 315 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    N. Kim, H. Kim, C. Seoul, C. Lee, Mater. Sci. Eng. B 111, 131 (2004)CrossRefGoogle Scholar
  7. 7.
    H. Kim, C. Jin, S. Park, S. Kim, C. Lee, Sens. Actuators B 161, 594 (2012)CrossRefGoogle Scholar
  8. 8.
    C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010)CrossRefGoogle Scholar
  9. 9.
    D. Trungdo, N.D. Hoa, P.V. Tong, N.V. Duy, T.D. Dao, H.V. Chung, T. Nagao, N.V. Hieu, J. Hazard Mater. 265, 124 (2014)CrossRefGoogle Scholar
  10. 10.
    V. Dobrkhotov, Sens. Actuators B 168, 138 (2012)CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, J. Xu, P. Xu, Y. Zhu, X. Chen, W. Yu, Nanotechnology 21, 285501 (2010)CrossRefGoogle Scholar
  12. 12.
    V. Galstyan, E. Comini, Nanotechnology 23, 235706 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    D. Zappa, Prpc. Eng. 25, 753 (2011)CrossRefGoogle Scholar
  14. 14.
    I.-S. Hwang, J.-K. Choi, H.S. Woo, S.-J. Kim, S.-Y. Jung, T.-Y. Seong, I.-D. Kim, J.-H. Lee, ACS Appl. Mater. Interfaces 3, 3140 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti, M. Niederberger, Angew. Chem. Int. Ed. 45, 261 (2006)CrossRefGoogle Scholar
  16. 16.
    C.S. Rout, M. Hegde, C.N.R. Rao, Sens. Actuators B 128, 488 (2008)CrossRefGoogle Scholar
  17. 17.
    C. Balazsi, L. Wang, E.O. Zayim, I.M. Szilagyi, K. Sedlackova, J. Pfeifer, A.L. Toth, P.-I. Gouma, J. Eur. Ceram. Soc. 28, 913 (2008)CrossRefGoogle Scholar
  18. 18.
    Y.S. Kim, S.-C. Ha, K. Kim, H. Yang, S.-Y. Choi, Y.T. Kim, J.T. Park, C.H. Lee, J. Choi, J. Paek, K. Lee, Appl. Phys. Lett. 86, 213105 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Y.S. Kim, K. Lee, J. Nanosci. Nanotechnol. 9, 2468 (2009)Google Scholar
  20. 20.
    I. Kocemba, J. Rynkowsky, Sens. Actuators B 155, 659 (2011)CrossRefGoogle Scholar
  21. 21.
    Q. Xiang. G.F. Menm, H.B. Zhao, Y. Zhang, H. Li, W.J. Ma, J.Q. Xu, J. Phys. Chem. C. 114, 2049 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Kim, S. Park, S. Park, C. Lee, Sens. Actuators. B 209, 180 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Nagy, G. Mestl, Appl. Catal. A. 188, 337 (1999)CrossRefGoogle Scholar
  24. 24.
    N. Tammanoon, A. Wisitsoraat, C. Sriprachuabwong, D. Phokharatkul, A. Tuantranont, S. Phanichphant, C. Liewhiran, ACS Appl. Mater. Interfaces 7, 24338 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Seo, Y. Lim, H. Shin, Sens. Actuators B 247, 564 (2017)CrossRefGoogle Scholar
  26. 26.
    G. Sarala Devi, P.S. Prasada Reddy, K. Ramya, Mater. Today Proc. 3, 224 (2016)CrossRefGoogle Scholar
  27. 27.
    D.Z. Zhang, Y. Sun, C. Jiang, Y. Zhang, Sens. Actuators B 242, 15 (2017)CrossRefGoogle Scholar
  28. 28.
    Y. Zou, Q. Wang, C. Xiang, C. Tang, H. Chu, S. Qiu, F. Xu,. L. Sun, Int. J. Hydrogen Energy 41, 5396 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Seo, Y. Lim, H. Shin, Sens. Actuators B 210, 218 (2015)CrossRefGoogle Scholar
  30. 30.
    P.A. Russo, N. Donato, S. Gianluca, S. Baek, D.E. Conte, G. Neri, N. Pinna, Angew. Chem. Int. Ed. 51, 11053 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Dhall, N. Jaggi, Sens. Actuators B 210, 742 (2015)CrossRefGoogle Scholar
  32. 32.
    R. Kumar, D. Varandani, B.R. Mehta, V.N. Singh, Z. Wen, X. Feng, K. Mullen, Nanotechnology 22, 275719 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    D.-T. Phan, G.-S. Chung, Int. J. Hydrogen Energy 39, 620 (2014)CrossRefGoogle Scholar
  34. 34.
    D.-T. Phan, G.-S. Chung, Int. J. Hydrogen Energy 39, 20294 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Xu, Z. Xue, N. Qin, Z. Cheng, Q. Xiang, Sens. Actuators B 242, 148 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sangmin Lee
    • 2
  • Woo Seok Lee
    • 1
  • Jae Kyung Lee
    • 1
  • Soong Keun Hyun
    • 1
  • Chongmu Lee
    • 1
  • Seungbok Choi
    • 3
  1. 1.Department of Materials Science and EngineeringInha UniversityIncheonRepublic of Korea
  2. 2.Department of Electronic EngineeringInha UniversityIncheonRepublic of Korea
  3. 3.Department of Mechanical EngineeringInha UniversityIncheonRepublic of Korea

Personalised recommendations