Applied Physics A

, 124:259 | Cite as

Effect of interfacial SiO2−y layer and defect in HfO2−x film on flat-band voltage of HfO2−x/SiO2−y stacks for backside-illuminated CMOS image sensors

  • Heedo Na
  • Jimin Lee
  • Juyoung Jeong
  • Taeho Kim
  • Hyunchul Sohn
Article
  • 74 Downloads

Abstract

In this study, the effect of oxygen gas fraction during deposition of a hafnium oxide (HfO2−x) film and the influence of the quality of the SiO2−y interlayer on the nature of flat-band voltage (Vfb) in TiN/HfO/SiO2−y/p-Si structures were investigated. X-ray photoemission spectroscopy analysis showed that the non-lattice oxygen peak, indicating an existing oxygen vacancy, increased as the oxygen gas fraction decreased during sputtering. From CV and JE analyses, the Vfb behavior was significantly affected by the characteristics of the SiO2−y interlayer and the non-lattice oxygen fraction in the HfO2−x films. The HfO2−x/native SiO2−y stack presented a Vfb of − 1.01 V for HfO2−x films with an oxygen gas fraction of 5% during sputtering. Additionally, the Vfb of the HfO2−x/native SiO2−y stack could be controlled from − 1.01 to − 0.56 V by changing the deposition conditions of the HfO2−x film with the native SiO2−y interlayer. The findings of this study can be useful to fabricate charge-accumulating layers for backside-illuminated image sensor devices.

Notes

Acknowledgements

This work was supported by the Ministry of Trade, Industry & Energy (MoTIE, Korea) under Industrial Strategic Technology Development Program (Grant no. 10067481) and the Brain Korea 21 plus projects (BK21 plus).

References

  1. 1.
    J.R. Janesick, T. Elliott, S. Collins, M.M. Blouke, J. Freeman, Opt. Eng. 26, 692 (1987)ADSGoogle Scholar
  2. 2.
    R.C. Westhoff, B.E. Burke, H.R. Clark, A.H. Loomis, D.J. Young, J.A. Gregory, R.K. Reich, Proc. SPIE. 7249, 72490J (2009)ADSCrossRefGoogle Scholar
  3. 3.
    J. Janesick, T. Elliott, T. Daud, J. McCarthy, Proc. SPIE. 570, 46 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    M. Jaraiz, G.H. Gilmer, J.M. Poate, T.D. de la Rubia, Appl. Phys. Lett. 68, 409 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Takamura, S.H. Jain, P.B. Griffin, J.D. Plummer, J. Appl. Phys. 92, 230 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    S.G. Wuu, C.C. Wang, D.N. Yaung, Y.L. Tu, J.C. Liu, T.H. Hsu, F.J. Shiu, C.Y. Yu, G.Y. Shiau, R.J. Lin, C.S. Tsai, L. Tran, S.S. Chen, C.C. Wang, S.Y. Huang, H. Rhodes, D. Tai, Y. Qian, D. Mao, S. Manabe, A. Shah, R. Yang, J.C. Hsieh, C. Chang, C.W. Lu, S. Tseng, in IEEE International Image Sensor Workshop, Bergen, 2009Google Scholar
  7. 7.
    R.A. Stern, T. Whittemore, M. Winzenread, M.M. Blouke, Proc. SPIE. 1071, 43 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    M.E. Hoenk, P.J. Gruthaner, F.J. Gruthaner, R.W. Terhune, M. Fattahi, H.F. Tseng, Appl. Phys. Lett. 61, 1084 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    M. Lesser, V. Iyer, Proc. SPIE. 3355, 446 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    H.J. Kim, K.S. Lee, P. Choi, K.S. Kim, D. Baek, B. Choi, Jpn. J. Appl. Phys. 52, 10MC021 (2013)Google Scholar
  11. 11.
    S.M. Sze, K.K. NG, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, 2007)Google Scholar
  12. 12.
    N. Wu, Q. Zhang, C. Zhu, C.C. Yeo, S.J. Whang, D.S.H. Chan, M.F. Li, B.J. Cho, A. Chin, D.L. Kwong, A.Y. Du, C.H. Tung, N. Balasubramanian, Appl. Phys. Lett. 84, 3741 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    M. Houssa, V.V. Afanas’ev, A. Stesmans, M.M. Heyns, Appl. Phys. Lett. 77, 1885 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    S. Guha, V. Narayanan, Phys. Rev. Lett. 98, 196101 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    M.P. Lesser, Proc. SPIE. 2198, 782 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    E.S. Field, J.C. Bellum, D.E. Kletecka, Opt. Eng. 56, 011005 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Y.X. Yeng, J.B. Chou, V. Rinnerbauer, Y. Shen, S.G. Kim, J.D. Joannopoulos, M. Soljačić, I. Čelanović, Proc. SPIE. 9170, 91700X (2014)CrossRefGoogle Scholar
  18. 18.
    J.C. Tinoco, M. Estrada, G. Romero, Microelectron. Reliab. 55, 895 (2003)CrossRefGoogle Scholar
  19. 19.
    J.C. Tinoco, M. Estrada, in Proceedings of the 24th International Conference on Microelectronics, vol. 2, p. 463, 2004Google Scholar
  20. 20.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, J. Chastain, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, 1992)Google Scholar
  21. 21.
    B. V. Crist, Handbook of Monochromatic XPS Spectra: The Elements and Native Oxides (Wiley, Baffins Lane, 2000)Google Scholar
  22. 22.
    J.C.C. Fan, J.B. Goodenough, J. Appl. Phys. 48, 3524 (1977)ADSCrossRefGoogle Scholar
  23. 23.
    H. Park, M. Jo, H. Choi, M. Hasan, R. Choi, P.D. Kirsch, C.Y. Kang, B.H. Lee, T.W. Kim, T. Lee, H. Hwang, IEEE Electron Device Lett. 29, 54 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    K. Xiong, J. Robertson, S.J. Clark, J. Appl. Phys. 99, 044105 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    H. Kim, P.C. Mclntyre, C.O. Chui, K.C. Saraswat, J. Appl. Phys. 96, 3467 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    A. Leelavathi, G. Madras, N. Ravishankar, Phys. Chem. Chem. Phys. 15, 10795 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Kim, I.S. Mok, Y. Kim, K. Lee, D.H. Ko, H. sohn, J. Vac. Sci. Technol. B 31, 032206 (2013)CrossRefGoogle Scholar
  28. 28.
    D.L. Griscom, J. Ceram. Soc. Jpn. 99, 923 (1991)CrossRefGoogle Scholar
  29. 29.
    J. Yuan, D. Haneman, J. Appl. Phys. 86, 2358 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    F.C. Chiu, Adv. Mater. Sci. Eng. 2014, 578168 (2014).  https://doi.org/10.1155/2014/578168 Google Scholar
  31. 31.
    W.R. Harrell, J. Frey, Thin Solid Films 352, 195 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations