Advertisement

Applied Physics A

, 124:228 | Cite as

Activation of dopant in silicon by ion implantation under heating sample at 200 °C

  • Toshiyuki Sameshima
  • Keisuke Yasuta
  • Masahiko Hasumi
  • Tomokazu Nagao
  • Yutaka Inouchi
Article
  • 46 Downloads

Abstract

Activation and carrier generation are reported in the case of phosphorus implantation with a dose of 2.0 × 1015 cm−2 at 70 keV to crystalline silicon substrates under heating ranging from 200 to 500 °C. The analysis of the optical reflectivity spectra of implanted surfaces revealed that the effective amorphized thickness was low of 2.9 nm in the case of 200 °C-phosphorus implantation, while it was large of 140 nm for implantation at room temperature. The carrier density par unit area increased from 6.9 × 1013 to 4.8 × 1014 cm−2 and the photo-induced minority carrier effective lifetime increased from 2.2 × 10−6 to 1.6 × 10−4 s as the implantation temperature increased from 200 to 500 °C. Defect reduction with 1.3 MPa H2O vapor heating at 250 °C for 3 h increased the carrier density par unit area of the 200 °C-phosphorus-implanted sample to 2.7 × 1014 cm−2. The rectified characteristics were obtained by current–voltage measurement in the case of phosphorus implantation to p-type silicon substrate. Photovoltaic effect was also observed. These results show that the ion implantation under low temperature heating has a capability of p–n junction formation.

References

  1. 1.
    M. Mehrotra, J.C. Hu, M. Rodder, Electron Devices Meeting. IEDM’99. Technical Digest. International, 5–8 Dec 1999.  https://doi.org/10.1109/IEDM.1999.824183 (1999)
  2. 2.
    T. Ito, K. Suguro, M. Tamura, T. Taniguchi, Y. Ushiku, T. Iinuma, T. Itani, M. Yoshioka, T. Owada, Y. Imaoka, H. Murayama, T. Kusuda, 2002 Ext. Abstr. Int. Workshop on Junction Technology, p. 23 (2002)Google Scholar
  3. 3.
    A. Shima, A. Hiraiwa, Jpn. J. Appl. Phys. 45, 5708 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    K. Goto. T. Yamamoto, T. Kubo, M. Kase, Y. Wang, T. Lin, S. Talwar, T. Sugii, Electron Devices Meeting. IEDM’99. Technical Digest. International, 5–8 Dec 1999.  https://doi.org/10.1109/IEDM.1999.824302 (1999)
  5. 5.
    H. Onoda, Y. Nakashima, T. Nagayama, S. Sakai, Proc. 13th Int. Workshop Junction Technology, p. 66 (2013)Google Scholar
  6. 6.
    T. Mizuno, T. Nimura, Y. Omata, Y. Nagamine, T. Aoki, T. Sameshima, Jpn. J. Appl. Phys. 56, 04CB03 (2017)CrossRefGoogle Scholar
  7. 7.
    K. Yasuta, M. Hasumi, T. Nagao, Y. Inouchi, T. Sameshima, The 77th JSAP Autumn Meeting, 14a-B7-2 (2016)Google Scholar
  8. 8.
    J.F. Ziegler, J.M. Manoyan, Nucl. Instrum. Methods B 35, 215 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    K. Asada, K. Sakamoto, T. Watanabe, T. Sameshima, S. Higashi, Jpn. J. Appl. Phys. 39, 3883 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    M. Born, E. Wolf, Principles of Optics. (Pergamon, New York, 1974) (Chap. 1 and 13) Google Scholar
  11. 11.
    K. Ukawa, Y. Kanda, T. Sameshima, N. Sano, M. Naito, N. Hamamoto, Jpn. J. Appl. Phys. 49, 076503 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    E.D. Palk, Handbook of Optical Constants of Solids (Academic Press, London, 1985), pp. 562–577Google Scholar
  13. 13.
    J.R. Chelikowsky, M.L. Cohen, Phys. Rev. B 10, 5095 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    T. Sameshima, H. Hayasaka, T. Haba, Jpn. J. Appl. Phys. 48, 021204 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    T. Sameshima, T. Motoki, K. Yasuda, T. Nakamura, M. Hasumi, T. Mizuno, Jpn. J. Appl. Phys. 54, 081302 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Toshiyuki Sameshima
    • 1
  • Keisuke Yasuta
    • 1
  • Masahiko Hasumi
    • 1
  • Tomokazu Nagao
    • 2
  • Yutaka Inouchi
    • 2
  1. 1.Tokyo University of Agriculture and TechnologyTokyoJapan
  2. 2.Nissin Ion Equipment Co. Ltd.ShigaJapan

Personalised recommendations