Applied Physics A

, 124:230 | Cite as

Pronounced effects of the nominal concentrations of WO3 and Ag: WO3 nano-plates (obtained by a co-precipitation method) on their structural, morphological and optical properties

Rapid communication

Abstract

Tungsten oxide and different concentration of silver (Ag)-doped tungsten oxide nano material were synthesized by co-precipitation technique. The functional vibrations, structure, and morphology of as-prepared nano material were studied by Fourier transmission infrared spectroscopy, X-ray diffraction, scanning electron microscopy (SEM) and High-resolution transmission electron microscopy (HR-TEM) techniques. The SEM and HR-TEM analysis revealed the formation of nano-plate/nano rods with an average diameter of 40–80 nm diameter and 1–1.5 mm length. Fluorescence (PL) and UV–visible absorption techniques have been used to study the optical properties of the prepared nanoparticles. The observed red shift in the visible absorption spectra confirmed the promoted electron–phonon interaction in WO3 and Ag: WO3 nanoparticles compared to bulk structures. The photoluminescence of nanocrystalline Ag2+ doped WO3 exhibited a strong violet–blue, blue–green emission. Concentration dependence of the emission intensity of Ag2+ in WO3 was studied, and the significant concentration was found to be 0.5% of Ag: WO3. The effluent dye degradation executed for the 0.5% of Ag: WO3 sample under the visible light which reveals the highest degradation efficiency in appropriate time.

Notes

Acknowledgements

The author is grateful to the department of Science and Technology (DST) for extending financial assistance to carry out this work.

References

  1. 1.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  2. 2.
    V.K. Gupta, A. Rastogi, A. Nayak, J. Colloid Interface Sci. 342, 533 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    J. Mittal, A. Mittal, V.K. Malviya, Gupta, J. Colloid Interface Sci. 344, 497 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    A.K. Jain, V.K. Gupta, A. Bhatnagar, S. Suhas, Sep. Sci. Technol. 38, 463 (2003)CrossRefGoogle Scholar
  5. 5.
    D.W. Hwang, J. Kim., T.J. Park., J.S. Lee, Catal. Lett. 80, 53 (2002)CrossRefGoogle Scholar
  6. 6.
    R.A. Rakkesh, S. Balakumar, Process Appl. Ceram. 8, 7 (2014)CrossRefGoogle Scholar
  7. 7.
    C.G. Granqvist, Electrochromic tungsten oxide films: review of progress 1993–1998. Sol. Energy Mater. Sol. Cells 60, 201 (2000)CrossRefGoogle Scholar
  8. 8.
    M. Gillet, K. Masek, E. Gillet, Surf. Sci. 566, 383 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    C.G. Granqvist, Handbook of Electrochromic Materials (Elsevier, Amsterdam, 1995)Google Scholar
  10. 10.
    S.H. Lee, H.C. Smith, D. Edwin, C.E. Tracy, A. Mascanrenhas, J.R. Pitts, S.K. Deb, J. Appl. Phys. 88, 3076 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    C.O. Avellaneda, L.O.S. Bulhoes, Solid State Ion. 165, 59 (2003)CrossRefGoogle Scholar
  12. 12.
    E. Gyorgy, G. Socol, I.N. Mihailescu, C. Ducu, S. Ciuca, J. Appl. Phys. 97, 093527 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    M. Feng, A.L. Pan, H.R. Zhang, Z.A. Li, F. Liu, H.W. Liu, D.X. Shi, B.S. Zou, H.J. Gao, Appl. Phys. Lett. 86, 141901 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    R. Aimirad, O. Akhavan, A.Z. Moshfegh, J. Electrochem. Soc. 153, 11 (2006)CrossRefGoogle Scholar
  15. 15.
    L. Xiong, T. He, Chem. Mater. 18(9), 2211 (2006)CrossRefGoogle Scholar
  16. 16.
    H.Y. Wang, P. Xu, T.M. Wang, Thin Solid Films 388, 68 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    H.J. Liu, T.Y. Peng, J.R. Xiao, D. Zhao, Z.H. Peng, J. Wuhan Univ. Mater. Sci. Ed. 51, 397 (2005)Google Scholar
  18. 18.
    H. Liu, T. Peng, D. Ke, Z. Peng, C. Yan, Mater. Chem. Phys. 104, 377 (2007)CrossRefGoogle Scholar
  19. 19.
    C. Janaky, K. Rajeshwar, N.R. De Tacconi, W. Chanmanee, M.N. Huda, Catal. Today 199, 53 (2013)CrossRefGoogle Scholar
  20. 20.
    T. Jesionowski, Powder Technol. 127, 56 (2002)CrossRefGoogle Scholar
  21. 21.
    X.J. Qin, L. Zhao, G.J. Shao, N. Wang, Thin Solid Films 542, 144 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    R. Radha, A. Srinivasn, P. Manimuthu, S. Balakumar, J. Mater. Chem. C. 39, 1 (2015)Google Scholar
  23. 23.
    H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, Y. Jinhua, Adv. Mater. 24, 229 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Lv, T. Kako, Z.G. Zou, J.H. Ye, Appl. Phys. Lett. 95, 032107 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    V.B. Kumar, C.E. Sawin, D. Mohanta, S. Baruah, N.S. Islam, J. Nanosci. Nanotechnol. 11, 4659 (2011)CrossRefGoogle Scholar
  26. 26.
    B.J. Jin, S. Im, S.Y. Lee, Thin Solid Films 366, 107 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    W. Li, D. Mao, F. Zhang et al., Nucl. Instrum. Methods B 169, 59 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    S. Sambasivam, D. Paul Joseph, S. Asiri Naidu, K.N. Hui, K.S. Hui, B.C. Choi, J. Adv. Ceram. 4, 300 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Chawla, K. Jayanthi, R.K. Kotnala, Phys. Rev. B. 79, 125204 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    O.A. Lopez, J. Mckittrick, L.E. Shea, J. Lumin. 71, 1 (1997)CrossRefGoogle Scholar
  31. 31.
    K. Pingmuang, J. Chen, W. Kangwansupamonkon, G.G. Wallace, S. Phanichphant, A. Nattestad. Sci. Rep. 7, 8929 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    C. Pulgarin, G.M. Pajonk, J. Bandara, J. Kiwi, Meeting ACS Division of Environmental Chemistry. Anaheim CA Paper No. 232, 767 (1995)Google Scholar
  33. 33.
    F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, Appl. Catal. B Environ. 15, 147 (1998)CrossRefGoogle Scholar
  34. 34.
    G. Wu, T. Wu, J. Zhao, H. Hidaka, N. Serpone, Environ. Sci. Technol. 33, 2081 (1999)ADSCrossRefGoogle Scholar
  35. 35.
    G. Liu, X. Li, J. Zhao, S. Horikoshi, H. Hidaka, J. Mol. Catal. A: Chem. 153, 221 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsPresidency CollegeChennaiIndia

Personalised recommendations