Applied Physics A

, 124:238 | Cite as

Plasmon TiO2 nanotube arrays doped with silver nanoparticles act as photo-anode film in solar cells

  • Mina Guli
  • Minghan Deng
  • Theogene Bimenyimana
  • Zhe Hu
  • Songyuan Dai


A simple strategy to improve the performance of a TiO2 nanotube film by use of metal nanoparticles is presented in dye-sensitized solar cells (DSSCs). Metal nanoparticles modified TiO2 nanotubes through a simple soaking method. An excellent enhancement in the optical property has been observed from the TiO2 nanotube film modified with Ag nanoparticles, which is owing to the surface plasmon resonance. The plasmon effects of Ag, together with the straight pathway and porous structure of TiO2 nanotubes have been used to significantly enhance the photo-electric performance of DSSCs. The efficiency of the DSSCs increased significantly from 3.89 to 5.18%, together with corresponding enhancements in current density from 12.30 to 12.55 mA/cm2, open circuit voltage from 0.66 to 0.71 V, respectively.



This work was supported by the Fundamental Research Funds for the Central Universities (nos. 2017YQ003 and 2014MS32), Beijing outstanding talents cultivation funding project (no. 2013A009005000003) and the National Natural Science Foundation of China (no. 51102092).


  1. 1.
    B. O’Regan, M. Grätzel, Nature. 353, 737 (1991)CrossRefGoogle Scholar
  2. 2.
    A. Yella, H.W. Lee, H.N. Tsao, C.Y. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Gratzel, Science. 334, 629 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    M. Freitag, J. Teuscher, Y. Saygili, X.Y. Zhang, F. Giordano, P. Liska, J.L. Hua, S.M. Zakeeruddin, J.E. Moser, M. Grätzel, Nat. Photon. 11, 372 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    H. Ullah, S. Bibi, A.A. Tahir, T.K. Mallick, J. Alloy. Compd. 696, 914 (2017)CrossRefGoogle Scholar
  5. 5.
    Y.J. Ji, Funct Mater Lett. 08, 1550023 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M.Z. Ge, C.Y. Cao, J.Y. Huang, S.H. Li, Z. Chen, K.Q. Zhang, S.S. Al-Deyab, Y.K. Lai, J. Mater. Chem. A. 4, 6772 (2016)CrossRefGoogle Scholar
  7. 7.
    M.Z. Ge, Q.S. Li, C.Y. Cao, J.Y. Huang, S.H. Li, S.N. Zhang, Z. Chen, K.Q. Zhang, S.S. Al-Deyab, Y.K. Lai, Adv. Sci. 4, 1600152 (2017)CrossRefGoogle Scholar
  8. 8.
    M.Z. Ge, C.Y. Cao, S.H. Li, Z.Y.X. Tang, L.N. Wang, N. Qi, J.Y. Huang, K.Q. Zhang, S.S. Al-Deyab, Y. K. Lai, Nanoscale. 8, 5226 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    K.K. Tehare, S.S. Bhande, S.U. Mutkule, F.J. Stadler, J.P. Ao, R.S. Mane, X.K. Liu, J. Alloy. Compd. 704, 187 (2017)CrossRefGoogle Scholar
  10. 10.
    Z.H. Tian, J.X. Yao, M. Guli, Adv. Mater. Res. 629, 332 (2013)CrossRefGoogle Scholar
  11. 11.
    M.N. Guli, J.X. Yao, J.Y. Zhao, W.P. Rao, L. Xiao, H.X. Tian, Opt. Mater. 35, 2175 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    M.N. Guli, J.X. Yao, W.P. Rao, J.Y. Zhao, H.X. Tian, J. Porous. Mater. 20, 1441 (2013)CrossRefGoogle Scholar
  13. 13.
    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, G.A. Grimes, Nano Lett. 6, 215 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    D. Guan, Y. Wang, Nanoscale. 4, 2968 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    A. Mathew, G.M. Rao, N. Munichandraiah, Thin Solid Films. 520, 3581 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    C.P. Collier, R.J. Saykally, J.J. Shiang, S.E. Henrichs, J. R. Heath Sci. 277, 1978 (1997)Google Scholar
  17. 17.
    M. Ihara, K. Tanaka, K. Sakaki, I. Honma, K. Yamada, J. Phys. Chem. B. 101, 5153 (1997)CrossRefGoogle Scholar
  18. 18.
    H.H. Hu, J.F. Shen, X.H. Cao, H. Wang, H.R. Lv, Y.C. Zhang, W.Z. Zhu, J.H. Zhao, C. Cui, J. Alloy. Compd. 694, 653 (2017)CrossRefGoogle Scholar
  19. 19.
    H. Tsuchiya, N. Tokuoka, S. Honda, Y. Shinkai, Y. Shimizu, S. Fujimoto, J. Phys. Conf. Ser. 165, 012037 (2009)CrossRefGoogle Scholar
  20. 20.
    K.M. Gangishetty, K.E. Lee, R.W.J. Scott, T.L. Kelly, ACS Appl. Mater. Interfaces. 5, 11044 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Agarwala, G.W. Ho, J. Solid State Chem. 189, 101 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    K.P. Xie, L. Sun, C.L. Wang, Y.K. Lai, M.Y. Wang, H.B. Chen, C.J. Lin, Electrochim. Acta. 55, 7211 (2010)CrossRefGoogle Scholar
  23. 23.
    M.N. Guli, Z. Hu, J.X. Yao, Z. Zhou, Mater Technol. 32, 239 (2017)CrossRefGoogle Scholar
  24. 24.
    M.N. Guli, M.H. Deng, T. Bimenyimana, Z. Hu, Appl. Phys. A. 123, 675 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    J. Zhang, S. Yan, L. Fu, F. Wang, M.Q. Yuan, G.X. Luo, Q. Xu, X. Wang, C. Li, Chin. J. Catal. 32, 983 (2011)CrossRefGoogle Scholar
  26. 26.
    K.C. Lee, S.J. Lin, C.H. Lin, Surf. Coat. Technol. 202, 5339 (2008)CrossRefGoogle Scholar
  27. 27.
    C.S. Lim, J.H. Ryu, D.H. Kim, S.Y. Cho, W.C. Oh, J. Ceram. Process. Res. 11, 736 (2010)Google Scholar
  28. 28.
    X. Yu, B. Kim, Y.K. Kim, ACS Catal. 3, 2479 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mina Guli
    • 1
    • 2
  • Minghan Deng
    • 1
    • 2
  • Theogene Bimenyimana
    • 1
    • 2
  • Zhe Hu
    • 1
    • 2
  • Songyuan Dai
    • 1
    • 2
  1. 1.Beijing Key Laboratory of Energy Safety and Clean UtilizationNorth China Electric Power UniversityBeijingChina
  2. 2.Beijing Key Laboratory of Novel Thin Film Solar Cells, School of Renewable EnergyNorth China Electric Power UniversityBeijingChina

Personalised recommendations