Applied Physics A

, 124:221 | Cite as

Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy

Article
Part of the following topical collections:
  1. COLA2017

Abstract

The physical origin of material removal in dielectrics upon femtosecond laser pulse irradiation (800 nm, 120 fs pulse duration) has been investigated at fluences slightly above ablation threshold. Making use of a versatile pump–probe microscopy setup, the dynamics and different key stages of the ablation process in lithium niobate have been monitored. The use of two different illumination wavelengths, 400 and 800 nm, and a rigorous image analysis combined with theoretical modelling, enables drawing a clear picture of the material excitation and expansion stages. Immediately after excitation, a dense electron plasma is generated. Few picoseconds later, direct evidence of a rarefaction wave propagating into the bulk is obtained, with an estimated speed of 3650 m/s. This process marks the onset of material expansion, which is confirmed by the appearance of transient Newton rings, which dynamically change during the expansion up to approximately 1 ns. Exploring delays up to 15 ns, a second dynamic Newton ring pattern is observed, consistent with the formation of a second ablation front propagating five times slower than the first one.

Notes

Acknowledgements

This work has been partly funded by the Spanish Ministry of Economy and Competiveness (Project No. TEC2014-52642-C2-1-R). M.G.-L. acknowledges the FPU (Formación de Profesorado Universitario) Grant No. AP2012-0217 awarded by the Spanish Ministry of Education. We are grateful to Dr. K. Sokolowski-Tinten for the advices on the development of time-resolved microscopy using the same wavelengths for pump and probe pulses.

References

  1. 1.
    K. Sugioka, Y. Cheng, Light Sci. Appl. 3, e149 (2014)CrossRefGoogle Scholar
  2. 2.
    E. Gamaly, Femtosecond Laser-Matter Interactions Theory, Experiments and Applications (CRC Press, Boca Raton, 2011)Google Scholar
  3. 3.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, S.I. Anisimov, J. Meyer-ter-Vehn. Phys. Rev. Lett. 81, 224 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, M. Boing, H. Schueler, D. von der Linde, in High-Power Laser Ablation, Vol. 3343, ed. by C.R. Phipps (SPIE, 1998), pp. 46–57Google Scholar
  5. 5.
    M.C. Downer, R.L. Fork, C.V. Shank, J. Opt. Soc. Am. B 2, 595 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    S.I. Anisimov, N.A. Inogamov, A.M. Oparin, B. Rethfeld, T. Yabe, M. Ogawa, V.E. Fortov, Appl. Phys. A Mater. Sci. Process. Process. 69, 617 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    N.A. Inogamov, Y.V. Petrov, S.I. Anisimov, A.M. Oparin, N.V. Shaposhnikov, D. von der Linde, J. Meyer-ter-Vehn, J. Exp. Theor. Phys. Lett. 69, 310 (1999)CrossRefGoogle Scholar
  8. 8.
    D. von der Linde, K. Sokolowski-Tinten, Appl. Surf. Sci. 154–155, 1 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, J. Solis, Appl. Phys. Lett. 105, 112902 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    M. Garcia-Lechuga, J. Solis, J. Siegel, Appl. Phys. Lett. 108, 171901 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    T. Winkler, L. Haahr-Lillevang, C. Sarpe, B. Zielinski, N. Götte, A. Senftleben, P. Balling, T. Baumert, Nat. Phys. 14, 74–79 (2017)CrossRefGoogle Scholar
  12. 12.
    S. Rapp, M. Kaiser, M. Schmidt, H.P. Huber, Opt. Express. 24, 17572 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    L. Gallais, S. Monneret, Opt. Lett. 41, 3245 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    M. Chanal, V.Y. Fedorov, M. Chambonneau, R. Clady, S. Tzortzakis, D. Grojo, Nat. Commun. 8, 773 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    M. Garcia-Lechuga, J. Siegel, J. Hernandez-Rueda, J. Solis, J. Appl. Phys. 116, 113502 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Liu, Opt. Lett. 7, 196 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Norwood, 1987)MATHGoogle Scholar
  18. 18.
    J. Hernandez-Rueda, D. Puerto, J. Siegel, M. Galvan-Sosa, J. Solis, Appl. Surf. Sci. 258, 9389 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    B. Rethfeld, Phys. Rev. B. 73, 035101 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    M. Lebugle, N. Sanner, N. Varkentina, M. Sentis, O. Utéza, J. Appl. Phys. 116, 063105 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    J. Siegel, J. Solis, in Femtosecond Laser Micromach. Photonic Microfluid. Devices Transparent Mater, ed. by R. Osellame, G. Cerullo, R. Ramponi eds. (Springer, Berlin, 2012), pp. 19–41Google Scholar
  22. 22.
    D. Puerto, J. Siegel, W. Gawelda, M. Galvan-Sosa, L. Ehrentraut, J. Bonse, J. Solis, J. Opt. Soc. Am. B. 27, 1065 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    C. Quoix, G. Hamoniaux, A. Antonetti, J.-C. Gauthier, J.-P. Geindre, P. Audebert, J. Quant. Spectrosc. Radiat. Transf. 65, 455 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    D.E. Zelmon, D.L. Small, D. Jundt, J. Opt. Soc. Am. B. 14, 3319 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    E.G. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A.V. Rode, W. Krolikowski, Phys. Rev. B. 81, 054113 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    M. Garcia-Lechuga, L. Haahr-Lillevang, J. Siegel, P. Balling, S. Guizard, J. Solis, Phys. Rev. B. 95, 214114 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    D. Ciplys, R. Rimeika, Ultragarsas. 3, 14 (1999)Google Scholar
  28. 28.
    Y. Shibata, K. Kaya, K. Akashi, M. Kanai, T. Kawai, S. Kawai, J. Appl. Phys. 77, 1498 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    N. Zhang, X. Zhu, J. Yang, X. Wang, M. Wang, Phys. Rev. Lett. 99, 2 (2007)Google Scholar
  30. 30.
    H. Hu, X. Wang, H. Zhai, N. Zhang, P. Wang, Appl. Phys. Lett. 97, 061117 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    W.L. Chan, R.S. Averback, D.G. Cahill, A. Lagoutchev, Phys. Rev. B Condens. Matter Mater. Phys. 78, 1 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laser Processing Group, Instituto de OpticaConsejo Superior de Investigaciones Científica (IO, CSIC)MadridSpain
  2. 2.Centro de Láseres Pulsados (CLPU)VillamayorSpain

Personalised recommendations