Applied Physics A

, 124:226 | Cite as

Correlation between surface etching and NV centre generation in laser-irradiated diamond

  • Vitali V. Kononenko
  • Igor I. Vlasov
  • Evgeny V. Zavedeev
  • Andrej A. Khomich
  • Vitaly I. Konov


We investigated the role of surface etching in the process of laser-induced generation of nitrogen–vacancy (NV) complexes in diamond. The diamond treatment was performed using 100 fs laser pulses at wavelengths of 800, 400, and 266 nm, with a laser fluence that was lower than the graphitization threshold. The data characterizing the effect of irradiation dose and laser fluence on NV centres photoluminescence intensity are presented. The experiments conducted show a clear correlation between the photoluminescence emission, enhanced because of irradiation, and the amount of carbon material removed from the surface in this process. The mechanism combining laser-induced vacancy creation at the crystal surface and the plasma-assisted diffusion of the vacancies into the crystal bulk is discussed.



This work was supported by the Russian Science Foundation (Grant No. 14-22-00243). We are grateful to R.A. Khmelnitsky for detailed SEM inspection of the irradiated surface.


  1. 1.
    B.B. Buckley, G.D. Fuchs, L.C. Bassett, D.D. Awschalom, Spin-light coherence for single-spin measurement and control in diamond. Science 330(6008), 1212–1215 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    P. Neumann, J. Beck, M. Steiner, F. Rempp, H. Fedder, P.R. Hemmer, J. Wrachtrup, F. Jelezko, Single-shot readout of a single nuclear spin. Science 329(5991), 542–544 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sørensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466(7307), 730–734 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P.R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup, Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455(7213), 648–651 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    M.S. Grinolds, M. Warner, K. De Greve, Y. Dovzhenko, L. Thiel, R.L. Walsworth, S. Hong, P. Maletinsky, A. Yacoby, Subnanometre resolution in three-dimensional magnetic resonance imaging of individual dark spins. Nat. Nanotechnol. 9(4), 279–284 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    J. Martin, R. Wannemacher, J. Teichert, L. Bischoff, B. Köhler, Generation and detection of fluorescent color centres in diamond with submicron resolution. Appl. Phys. Lett. 75(20), 3096–3098 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    I. Aharonovich, C. Santori, B.A. Fairchild, J. Orwa, K. Ganesan, K.-M.C. Fu, R.G. Beausoleil, A.D. Greentree, S. Prawer, Producing optimized ensembles of nitrogen-vacancy color centres for quantum information applications. J. Appl. Phys. 106(12), 124904 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    K. Ohno, F.J. Heremans, L.C. Bassett, B.A. Myers, D.M. Toyli, A.C. Bleszynski Jayich, C.J. Palmstrøm, D.D. Awschalom, Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101(8), 082413 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    R. Kalish, C. Uzan-Saguy, B. Philosoph, V. Richter, J.P. Lagrange, E. Gheeraert, A. Deneuville, A.T. Collins, Nitrogen doping of diamond by ion implantation. Diam. Relat. Mater. 6(2–4), 516–520 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    M. David, D.M. Toyli, C.D. Weis, G.D. Fuchs, T. Schenkel, D.D. Awschalom, Chip-scale nanofabrication of single spins and spin arrays in diamond. Nano Lett. 10(8), 3168–3172 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    E. Kim, V.M. Acosta, E. Bauch, D. Budker, P.R. Hemmer, Electron spin resonance shift and linewidth broadening of nitrogen-vacancy centres in diamond as a function of electron irradiation dose. Appl. Phys. Lett. 101(8), 082410 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    C.A. McLellan, B.A. Myers, S. Kraemer, K. Ohno, D.D. Awschalom, A.C. Bleszynski Jayich, Patterned formation of highly coherent nitrogen-vacancy centres using a focused electron irradiation technique. Nano Lett. 16(4), 2450–2454 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Y.-C. Chen, P.S. Salter, S. Knauer, L. Weng, A.C. Frangeskou, C.J. Stephen, S.N. Ishmael, P.R. Dolan, S. Johnson, B.L. Green, G.W. Morley, M.E. Newton, J.G. Rarity, M.J. Booth, J.M. Smith, Laser writing of coherent colour centres in diamond. Nat. Photon 11(2), 77–80 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    V. Vitali, V.V. Kononenko, I.I. Vlasov, V.M. Gololobov, T.V. Kononenko, T.A. Semenov, A.A. Khomich, V.A. Shershulin, V.S. Krivobok, V.I. Konov, Nitrogen-vacancy defects in diamond produced by femtosecond laser nanoablation technique. Appl. Phys. Lett. 111(8), 081101 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    V.V. Kononenko, V.M. Gololobov, M.S. Komlenok, V.I. Konov, Nonlinear photooxidation of diamond surface exposed to femtosecond laser pulses. Laser Phys. Lett. 12(9), 096101 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    V.V. Kononenko, M.S. Komlenok, S.M. Pimenov, V.I. Konov, Photoinduced laser etching of a diamond surface. Quantum Electron. 37(11), 1043–618 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    S.V. Nistor, M. Stefan, V. Ralchenko, A. Khomich, D. Schoemaker, Nitrogen and hydrogen in thick diamond films grown by microwave plasma enhanced chemical vapor deposition at variable H2 flow rates. J. Appl. Phys. 87(12), 8741–8746 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    V.V. Kononenko, V.I. Konov, V.M. Gololobov, E.V. Zavedeev, Propagation and absorption of high-intensity femtosecond laser radiation in diamond. Quantum Electron. 44(12), 1099 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M.S. Komlenok, V.V. Kononenko, V.G. Ralchenko, S.M. Pimenov, V.I. Konov, Laser induced nanoablation of diamond materials. Phys. Procedia 12, 37–45 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Q. Sun, M. Alam, Relative oxidation behavior of chemical vapor deposited and type II a natural diamonds. J. Electrochem. Soc. 139(3), 933–936 (1992)CrossRefGoogle Scholar
  21. 21.
    A. Lehmann, C. Bradac, R.P. Mildren, Two-photon polarization-selective etching of emergent nano-structures on diamond surfaces. Nat. Commun. 5, 3341 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Bourgoin, B. Massarani, Threshold energy for atomic displacement in diamond. Phys. Rev. B 14(8), 3690–3694 (1976)ADSCrossRefGoogle Scholar
  23. 23.
    W. Hayes, M.J. Kane, O. Salminen, R.L. Wood, S.P. Doherty, ODMR of recombination centres in crystalline quartz. J. Phys. C Solid State Phys. 17(16), 2943–2951 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    S. Ismail-Beigi, S.G. Louie, Self-trapped excitons in silicon dioxide: mechanism and properties. Phys. Rev. Lett. 95(15), 156401 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    N. Itoh, T. Shimizu-Iwayama, T. Fujita, Excitons in crystalline and amorphous SiO2: formation, relaxation and conversion to Frenkel pairs. J. Non Cryst. Solids 179, 194–201 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    R.T. Williams, K.S. Song, W.L. Faust, C.H. Leung, Off-centre self-trapped excitons and creation of lattice defects in alkali halide crystals. Phys. Rev. B 33(10), 7232–7240 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    S. Guizard, P. Martin, G. Petite, P. D’Oliveira, P. Meynadier, Time-resolved study of laser-induced colour centres in SiO2. J. Phys. Condens. Matter 8(9), 1281–1290 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    N. Itoh, Bond scission induced by electronic excitation in solids: A tool for nanomanipulation. Nucl. Instrum. Methods Phys. Res. Sect. B 122(3), 405–409 (1997)CrossRefGoogle Scholar
  29. 29.
    V.V. Kononenko, E.V. Zavedeev, M.I. Latushko, V.I. Konov, Observation of fs laser-induced heat dissipation in diamond bulk. Laser Phys. Lett. 10(3), 036003 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vitali V. Kononenko
    • 1
    • 2
  • Igor I. Vlasov
    • 1
    • 2
  • Evgeny V. Zavedeev
    • 1
  • Andrej A. Khomich
    • 1
  • Vitaly I. Konov
    • 1
    • 2
  1. 1.General Physics Institute of RASMoscowRussia
  2. 2.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations