Advertisement

Applied Physics A

, 124:281 | Cite as

Phase gradient metasurface with broadband anomalous reflection based on cross-shaped units

  • Zhaobin Chen
  • Hui Deng
  • Qingxu Xiong
  • Chen Liu
Article

Abstract

It has been pointed out by many documents that a phase gradient metasurface with wideband characteristics can be designed by the unit with a low-quality factor (Q value). In this paper, a cross-shaped unit with a low-quality factor Q is proposed. By changing the variable parameters of the unit, it is found that the reflection phase of the unit can achieve a stable distribution of phase gradient in the frequency range of 8.0–20.0 GHz. we analyze variation of the electromagnetic field distribution on the unit with frequency and find that the size along electrical field polarization of electromagnetic field distribution area changes with frequency. Based on our design, effective size of electromagnetic field distribution area keeps meeting the subwavelength condition, thus stable phase distribution is gained across broadened bandwidth. It is found by the analysis of the phase gradient metasurface composed of seven units that the metasurface can exhibit anomalous reflection in the wide frequency band of 8.0–20.0 GHz, and the efficiency of abnormal reflection is higher in the range of 10.0–18.0 GHz. The error between the simulation results of abnormal reflection angle and the theoretical result is only − 1.5° to 0.5° after the work of comparison. Therefore, the metasurface designed by the new cross-shaped unit has a good control on the deflection direction of the reflected wave, and shows obvious advantages in widening the bandwidth.

References

  1. 1.
    D.R. Smith, J.B. Pendry, M.C. Wiltshire. Science. 305, 788–792 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    R.W. Ziolkowski, E. Heyman, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 64(2), 056625 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    H. Cory, C. Zach, Microw. Opt. Technol. Lett. 40(6), 460–465 (2004)CrossRefGoogle Scholar
  4. 4.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Science. 334, 6054:333–337 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    F. Qin, L. Ding, L. Zhang, F. Monticone, C.C. Chum, J. Deng, S. Mei, Y. Li, J. Teng, M. Hong, S. Zhang, A. Alù, C. Qiu. Sci. Adv. 2(1), e1501168 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    H. Shi, J. Li, A. Zhang, Y. Jiang, J. Wang, Z. Xu, S. Xia. IEEE Antennas Wirel Propag. Lett. 14, 104–107 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    C. Huang, W. Pan, X. Ma, X. Luo, Sci. Rep. 6, 23291 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S.N. Burokur, A. de Lustrac, Q. Wu, C.W. Qiu, A. Alù, Adv. Mater. 27(7), 1195–1200 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Nat Mater. 11(5), 426–431 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    H.L. Zhu, S.W. Cheung, K.L. Chung, T.I. Yuk, IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    X. Ding, H. Yu, S. Zhang, Y. Wu, K. Zhang, Q. Wu, IEEE Trans. Magn. 51(11), 1–1 (2015)Google Scholar
  12. 12.
    F. Aieta, P. Genevet, M.A. Kats, N. Yu, R. Blanchard, Z. Gaburro, F. Capasso. Nano Lett. 12(9), 4932–4936 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Zhang, L. Liang, J. Yang, Y. Feng, B. Zhu, J. Zhao, T. Jiang, B. Jin, W. Liu, Sci. Rep. 6, 26875 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    K. Chen, Y. Feng, Z. Yang, L. Cui, J. Zhao, B. Zhu, T. Jiang, Sci. Rep. 6, 35968 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    J. Su, Y. Lu, H. Zhang, Z. Li, Y. Yang, Y. Che, K. Qi. Sci. Rep. 7, 42283 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    H. Sun, C. Gu, X. Chen, Z. Li, L. Liu, B. Xu, Z. Zhou, Sci. Rep. 7, 40782 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith. IEEE Antennas Propag. Mag. 54(2), 10–35 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Jang, M. Yoo, S. Lim, Opt. Express. 21(20), 24163 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    N. Meinzer, W.L. Barnes, I.R. Hooper, Nat Photonics. 8, 889–898 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    X. Ni, N.K. Emani, A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Science. 335(6067), 427 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Li, J. Zhang, S. Qu, J. Wang, H. Chen, L. Zheng, Z. Xu, A. Zhang, J.Phys. D Appl. Phys. 47(42), 425103–425109 (2014). 7)ADSCrossRefGoogle Scholar
  22. 22.
    S. Kruk, B. Hopkins, I.I. Kravchenko, A. Miroshnichenko, D.N. Neshev, Y.S. Kivshar, APL Photonics. 1(3), 030801 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Yang, W. Wang, P. Moitra, I.I. Kravchenko, D.P. Briggs, J. Valentine, Nano Lett. 14(3), 1394–1399 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Y.F. Yu, A.Y. Zhu, R. Paniagua-Domínguez, Y.H. Fu, B. Luk’yanchuk, A.I. Kuznetsov Laser Photonics Rev. 9(4), 412–418 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Sun, K. Yang, C. Wang, T.-K. Juan, W. Chen, C. Liao, Q. He, S. Xiao, W. Kung, G. Guo, L. Zhou, D. Ping Tsai, Nano Lett. 12(12), 6223–6229 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    M. Pu, P. Chen, C. Wang, Y. Wang, Z. Zhao, C. Hu, C. Huang, X. Luo, Aip Adv. 3(5), 77 (2013)Google Scholar
  27. 27.
    H.F. Ma, Y.Q. Liu, K. Luan, T.J. Cui, Sci. Rep. 6, 39390 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    X. Luo, Sci. China Phys. Mech. Astron. 58, 594201 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electronics and Information EngineeringBeihang UniversityBeijingChina
  2. 2.School of Sino-French EngineerBeihang UniversityBeijingChina

Personalised recommendations