Applied Physics A

, 124:233 | Cite as

The effect of different thickness alumina capping layers on the final morphology of dewet thin Ni films

  • Benjamin C. White
  • Amir Behbahanian
  • T. McKay Stoker
  • Jason D. Fowlkes
  • Chris Hartnett
  • Phillip D. Rack
  • Nicholas A. Roberts


Nanoparticles on a substrate have numerous applications in nanotechnology, from enhancements to solar cell efficiency to improvements in carbon nanotube growth. Producing nanoparticles in a cost effective fashion with control over size and spacing is desired, but difficult to do. This work presents a scalable method for altering the radius and pitch distributions of nickel nanoparticles. The introduction of alumina capping layers to thin nickel films during a pulsed laser-induced dewetting process has yielded reductions in the mean and standard deviation of radii and pitch for dewet nanoparticles with no noticeable difference in final morphology with increased capping layer thickness. The differences in carbon nanotube mats grown, on the uncapped sample and one of the capped samples, is also presented here, with a more dense mat being present for the capped case.



The material fabrication portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. We also acknowledge the support from the Microscopy Core Facility at Utah State University for the SEM results, which was acquired through support of the National Science Foundation (CMMI 1337932). PDR acknowledges support from the National Science Foundation (CBET 1603780—Ronald Joslin program manager) for his contribution to this work.


  1. 1.
    M. Segev-Bar, H. Haick, Flexible sensors based on nanoparticles. ACS Nano 7, 8366–8378 (2013)CrossRefGoogle Scholar
  2. 2.
    I. Wong, G. Teo, C. Neto, S. Thickett, Micropatterned surfaces for atmospheric water condensation via controlled radical polymerization and thin film dewetting. ACS Appl. Mater. Interfaces 7, 21562–21570 (2015)CrossRefGoogle Scholar
  3. 3.
    K. Nakayama, K. Tanabe, H.A. Atwater, Plasmonic nanoparticle enhanced light absorption in gaas solar cells. Appl. Phys. Lett. 93, 121904 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    E. Destouesse, S. Chambon, S. Courtel, L. Hirsch, G. Wantz, Solution processed small-molecule bulk heterojunctions: leakage currents and the dewetting issue for inverted solar cells. ACS Appl. Mater. Interfaces 7, 24663–24669 (2015)CrossRefGoogle Scholar
  6. 6.
    Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, H. Dai, Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105, 11424–11431 (2001)CrossRefGoogle Scholar
  7. 7.
    C. Cheung, A. Kurtz, H. Park, C. Lieber, Diameter-controlled synthesis of carbon nanotubes. J. Phys. Chem. B 106, 2429–2433 (2002)CrossRefGoogle Scholar
  8. 8.
    A. Moisala, A. Nasibulin, E. Kauppinen, The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review. J. Phys. Condens. Matter 15, S3011–S3035 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A. Geissler, M. He, J.-M. Benolt, P. Petit, Effect of hydrogen pressure on the size of nickel nanoparticles formed during dewetting and reduction of thin nickel films. J. Phys. Chem. C 114, 89–92 (2010)CrossRefGoogle Scholar
  10. 10.
    P. Rack, Y. Guan, J. Fowlkes, A. Melechko, M. Simpson, Pulsed laser dewetting of patterned thin metal films: a means of directed assembly. Appl. Phys. Lett. 92, 223108 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    C.V. Thompson, Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399–434 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    F. Beck, S. Mokkapati, K. Catchpole, Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles. Prog. Photovolt. Res. Appl. 18, 500–504 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Fowlkes, Y. Wu, P. Rack, Directed assembly of bimetallic nanoparticles by pulsed-laser-induced dewetting: a unique time and length scale regime. ACS Appl. Mater. Interfaces 2, 2153–2161 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Fowlkes, L. Kondic, J. Diez, Y. Wu, P. Rack, Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 11, 2478–2485 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    N. Roberts, J. Fowlkes, K. Mahady, S. Afkhami, L. Kondic, P. Rack, Directed assembly of one- and two-dimensional nanoparticle arrays from pulsed laser induced dewetting of square waveforms. ACS Appl. Mater. Interfaces 5, 4450–4456 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Wu, J.D. Fowlkes, P.D. Rack, J.A. Diez, L. Kondic, On the breakup of patterned nanoscale copper rings into droplets via pulsed-laser-induced dewetting: competing liquid-phase instability and transport mechanisms. Langmuir 26, 11972–11979 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Wu, N. Dong, S. Fu, J. Fowlkes, L. Kondic, M. Vincent, D. deCeglia, Directed liquid phase assembly of highly ordered metallic nanoparticle arrays. ACS Appl. Mater. Interfaces 6, 5835–5843 (2014)CrossRefGoogle Scholar
  18. 18.
    D. Gentili, G. Foschi, F. Valle, M. Cavallini, Application of dewetting in micro and nanotechnology. Chem. Soc. Rev. 41, 4430–4443 (2012)CrossRefGoogle Scholar
  19. 19.
    P. Farzinpour, A. Sundar, K. Gilroy, Z. Eskin, R. Hughes, S. Neterina, Alterign the dewetting characteristics of ultrathin gold and silver films using a sacrificial antimony layer. Nanotechnology 23, 495604–495614 (2012)CrossRefGoogle Scholar
  20. 20.
    X. Han, J. Hou, J. Xie, J. Yin, Y. Tong, C. Lu, H. Mohwald, Synergism of dewetting and self-wrinkling to create two-dimensional ordered arrays fo functional microspheres. ACS Appl. Mater. Interfaces 8, 16404–16411 (2016)CrossRefGoogle Scholar
  21. 21.
    R. Baluffi, S. Allen, W. Carter, Kinetics of materials (Wiley, Hoboken, 2005)CrossRefGoogle Scholar
  22. 22.
    Y. Wu, Nanoscale metal thin film dewetting via nanosecond laser melting: understanding instabilities and materials transport in patterned thin films. PhD Thesis, University of Tennessee, Knoxville (2011)Google Scholar
  23. 23.
    J. Peng, R. Xing, Y. Wu, B. Li, Y. Han, W. Knoll, D. Kim, Dewetting of thin polystyrene films under confinement. Langmuir 23, 2326–2329 (2007)CrossRefGoogle Scholar
  24. 24.
    A. Sundar, R. Hughes, P. Farzinpour, K. Gilroy, G. Devenyi, J. Preston, S. Neretina, Manipulation the size distribution of supported gold nanostructures. Appl. Phys. Lett. 100, 013111 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    J.E. Kline, Suppression of dewetting in pulsed laser melting of thin metallic films on silica. PhD Thesis, Washington University (2005)Google Scholar
  26. 26.
    Y. Guan, R. Pearce, A. Melechko, D. Hensley, M. Simpson, P. Rack, Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth. Nanotechnology 19, 235604–235607 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    H. Nii, Y. Sumiyama, H. Hakagawa, A. Kunishige, Influence of diameter on the Raman spectra of multi-walled carbon nanotubes. Appl. Phys. Express 1, 064005 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    M.S. Dresselhaus, A. Jorio, A.G.S. Filho, R. Saito, Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A 368, 5355–5377 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    J. Hodkiewicz, Rapid quality screening of carbon nanotubes with Raman spectroscopy (Thermo Fisher Scientific, Application Note: 51947, 2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUtah State UniversityLoganUSA
  2. 2.Center for Nanophase Materials ScienceORNLOak RidgeUSA
  3. 3.Department of Materials ScienceUniversity of TennesseeKnoxvilleUSA

Personalised recommendations