Applied Physics A

, 124:220 | Cite as

Growth of carbon nanotubes in arc plasma treated graphite disc: microstructural characterization and electrical conductivity study

  • B. B. Nayak
  • R. K. Sahu
  • T. Dash
  • S. Pradhan


Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.



The authors acknowledge the help and support received from their respective institutes. The principal author (BBN) worked at CSIR-IMMT, Bhubaneswar up to 29 February, 2016. A part of his work carried out within this time at the same institute is duly acknowledged.

Supplementary material

339_2018_1642_MOESM1_ESM.docx (128 kb)
Supplementary material 1 (DOCX 127 KB)


  1. 1.
    S. Iijima, Nature. 354, 56 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    M. Sheikhpour, A. Golbabaie, A. Kasaeian, Mater. Sci. Eng. 76, 1289 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S.W. Joo, Nanoscale Res. Lett. 9, 393 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    R. Purohit, K. Purohit, S. Rana, R.S. Rana, V. Patel, Proc. Mater. Sci. 6, 716 (2014)CrossRefGoogle Scholar
  5. 5.
    M.M.A. Rafique, J. Iqbal, J. Encapsul. Absorpt. Sci. 1, 29 (2011)Google Scholar
  6. 6.
    H. Golnabi, Sci. Iran. F. 19, 2012 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, J. Mater. Chem. 21, 15872 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Szabo, C. Perri, A. Csato, G. Giordano, D. Vuono, J.B. Nagy, Materials. 3, 3092 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    B.B. Nayak, B.C. Mohanty, S.K. Singh, J. Am. Ceram. Soc. 79, 1197 (1996)CrossRefGoogle Scholar
  10. 10.
    A. Sahu, B.B. Nayak, N. Panigrahi, B.S. Acharya, B.C. Mohanty, J. Mater. Sci. 35, 71 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401–187401 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    A.C. Ferrari, Solid State Commun. 143, 47 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D.N. Futaba, M. Yumara, K. Hata, Nat. Commun. (2013). Google Scholar
  14. 14.
    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Nano Lett. 8, 36 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    A. Amiri, M. Shanbedi, G. Ahmadi, H. Eshghi, S.N. Kazi, B.T. Chew, M. Savari, M.N. Mohd Zubir, Sci. Rep. 6, 32686 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    P.F. Kane, G.B. Larabee, Characterization of Semiconductor Materials, Texas Instruments Electronic Series, (McGraw Hill Book Co. NY, New York, 1970), pp. 33, 92, 243Google Scholar
  17. 17.
    I. Miccoli, F. Edler, H. Pfnur, C. Tegenkamp, J. Phys. Condens. Matter. 27, 223201 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    G. Chakraborty, K. Gupta, D. Rana, A.K. Meikap, Adv. Natl. Sci. Nanosci. Nanotechnol. 3, 035015 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    M.M. Larijani, E.H. Khamse, Z. Asadollahi, M. Asadi, Bull. Mater. Sci. 35, 305 (2012)CrossRefGoogle Scholar
  20. 20.
    Z.H. Khan, N. Salah, S. Habib, J. Nanomater. 2009, 429867 (2009)CrossRefGoogle Scholar
  21. 21.
    Z. Jingdong, in Proceedings, International Conference on Materials, Environmental and Biological Engineering (MEBE 2015) (Atlantis Press, 2015), p. 886Google Scholar
  22. 22.
    J. Ng, Y. Raitses, Carbon. 77, 80 (2014)CrossRefGoogle Scholar
  23. 23.
    B.B. Nayak, Surf. Coat. Technol. 201, 2639 (2006)CrossRefGoogle Scholar
  24. 24.
    B.B. Nayak, O.P.N. Kar, D. Behera, B.K. Mishra, Surf. Eng. 27, 99 (2011)Google Scholar
  25. 25.
    J.G. Park, S. Li, R. Liang, X. Fan, C. Zhang, B. Wang, Nanotechnology. 19, 185710 (2008). ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. B. Nayak
    • 1
  • R. K. Sahu
    • 2
  • T. Dash
    • 2
  • S. Pradhan
    • 3
  1. 1.CV Raman College of EngineeringBhubaneswarIndia
  2. 2.CSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia
  3. 3.Institute for Plasma ResearchGandhinagarIndia

Personalised recommendations