Advertisement

Applied Physics A

, 124:218 | Cite as

Thermal conductivity of single-wall MoS2 nanotubes

  • Siqi Li
  • Weihong Qi
  • Shiyun Xiong
  • Dongqing Yu
Article

Abstract

Using non-equilibrium molecular dynamics, the thermal conductivity of single-wall MoS2 nanotubes (MoS2 SWNTs) has been calculated for the first time. It has been found that the thermal conductivity of MoS2 SWNTs is two orders of magnitude smaller than that of carbon nanotubes. The temperature, length, and diameter dependence of thermal conductivity are also investigated. With the quantum corrected temperature, it reveals that the temperature-dependent thermal conductivities show a peaking behavior before falling off at higher temperature. The length effect on thermal conductivity indicates that a gradual transition from the nearly pure ballistic phonon transport to diffusive-ballistic phonon transport and converges with length much slower than the cases in monolayer MoS2 nanosheets or nanoribbons. At longer lengths with stronger diffusive effect, the thermal of conductivity is larger for smaller diameters.

Notes

Acknowledgements

This work was supported by National Nature Science Foundation of China (Grant no. 21373273). The simulation was carried out on the supercomputer of High Performance Computing Center at Central South University.

References

  1. 1.
    K. Dolui, C.D. Pemmaraju, S. Sanvito, ACS Nano 6(6), 4823–4834 (2012)CrossRefGoogle Scholar
  2. 2.
    D.D. Fan, H.J. Liu, L. Cheng, P.H. Jiang, J. Shi, X.F. Tang, Appl. Phys. Lett. 105(13), 133113 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    H. Guo, T. Yang, P. Tao, Y. Wang, Z. Zhang, J. Appl. Phys. 113(1), 013709 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    H. Ramakrishna Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C. Rao, Angew. Chem. 122(24), 4153–4156 (2010)CrossRefGoogle Scholar
  5. 5.
    X. Wei, Y. Wang, Y. Shen, G. Xie, H. Xiao, J. Zhong, G. Zhang, Appl. Phys. Lett. 105(10), 103902 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim, Phys. Rev. Lett. 85(1), 146 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    C. Ataca, S. Ciraci, J. Phys. Chem. C 115(27), 13303–13311 (2011)CrossRefGoogle Scholar
  8. 8.
    C.M. Zelenski, P.K. Dorhout, J. Am. Chem. Soc. 120(4), 734–742 (1998)CrossRefGoogle Scholar
  9. 9.
    M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, D. Mihailovic, Science 292(5516), 479–481 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    W. Huang, H. Da, G. Liang, J. Appl. Phys. 113(10), 104304 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    X. Liu, G. Zhang, Q.-X. Pei, Y.-W. Zhang, Appl. Phys. Lett. 103(13), 133113 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    J.-W. Jiang, H.S. Park, T. Rabczuk, J. Appl. Phys. 114(6), 064307 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    T.-H. Liu, Y.-C. Chen, C.-W. Pao, C.-C. Chang, Appl. Phys. Lett. 104(20), 201909 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    D. Yu, S. Li, W. Qi*, M. Wang, Appl. Phys. Lett. 111(12), 123102 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Feldman, E. Wasserman, D. Srolovitz, R. Tenne, Science 267(5195), 222–225 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    J.-W. Jiang, B.-S. Wang, T. Rabczuk, Nanotechnology. 25(10), 105706 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8(3), 902–907 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    W.J. Evans, L. Hu, P. Keblinski, Appl. Phys. Lett. 96(20), 203112 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Guo, D. Zhang, X.-G. Gong, Appl. Phys. Lett. 95(16), 163103 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J.-W. Jiang, J.-S. Wang, B. Li, Phys. Rev. B 79(20), 205418 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    S. Berber, Y.-K. Kwon, D. Tomanek, Phys. Rev. Lett. 84(20), 4613 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B 59(4), R2514 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    J.R. Lukes, H. Zhong, J. Heat Transfer 129(6), 705–716 (2007)CrossRefGoogle Scholar
  24. 24.
    J. Che, T. Cagin, W.A. Goddard III, Nanotechnology 11(2), 65 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    B. Cao, Q. Hou, Z. Guo, W. Zhang, Presented at the ASME 2009 second international conference on micro/nanoscale heat and mass transfer, pp. 609–614 (2009)Google Scholar
  26. 26.
    S. Maruyama, Microscale Thermophys. Eng. 7(1), 41–50 (2003)CrossRefGoogle Scholar
  27. 27.
    J. Shiomi, S. Maruyama, Jpn. J. Appl. Phys. 47(4R), 2005 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Ni, H. Le Khanh, Y. Chalopin, J. Bai, P. Lebarny, L. Divay, S. Volz, Appl. Phys. Lett. 100(19), 193118 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    J. Shiomi, S. Maruyama, Presented at the ASME/JSME 2007 thermal engineering heat transfer summer conference collocated with the ASME 2007 InterPACK conference, pp. 381–386 (2007)Google Scholar
  30. 30.
    M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Appl. Phys. Lett. 80(15), 2767–2769 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    S. Iijima, T. Ichihashi, Nature. 363(6430), 603–605 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    M.A. Osman, D. Srivastava, Nanotechnology. 12(1), 21 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe, T. Shimizu, Phys. Rev. Lett. 95(6), 065502 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Feng, J. Zhu, D.W. Feng, J. Eng. Thermophys. 10, 025 (2014)Google Scholar
  35. 35.
    F. Müller-Plathe, J. Chem. Phys. 106(14), 6082–6085 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    S. Plimpton, J. Comput. Phys. 117(1), 1–19 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 85(11), 115317 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    R. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X. Wu, A. Kis, T. Luo, A.R. Hight Walker, H.G. Xing, ACS Nano. 8(1), 986–993 (2014)CrossRefGoogle Scholar
  39. 39.
    A.A. Balandin, Nat. Mater. 10(8), 569–581 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    A. Maiti, G.D. Mahan, S.T. Pantelides, Solid State Commun. 102(7), 517–521 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    Y.B. Zheng, H.L. Dong, F.F. Chen, Acta Phys. Sinca 63(7), 76501–076501 (2014)Google Scholar
  42. 42.
    N. Wakabayashi, H.G. Smith, R.M. Nicklow, Phys. Rev. B. 12(2), 659 (1975)ADSCrossRefGoogle Scholar
  43. 43.
    Y.H. Lee, R. Biswas, C. Soukoulis, C. Wang, C. Chan, K. Ho, Phys. Rev. B 43(8), 6573 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    P.K. Schelling, S.R. Phillpot, P. Keblinski, Phys. Rev. B 65(14), 144306 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Cai, J. Lan, G. Zhang, Y.-W. Zhang, Phys. Rev. B 89(3), 035438 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Gao, Acta Metall. Sin. 46(10), 1244–1249 (2010)CrossRefGoogle Scholar
  47. 47.
    N. Mingo, D.A. Broido, Nano Lett. 5(7), 1221–1225 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    W. Bao, C. Zhu, Acta Phys. Sinica 55(7), 3552–3557 (2006)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Siqi Li
    • 1
  • Weihong Qi
    • 1
  • Shiyun Xiong
    • 2
  • Dongqing Yu
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Functional Nano and Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations