Applied Physics A

, 124:229 | Cite as

Magnetoimpedance and magnetooptical properties of electrodeposited NiFeMo ribbons

  • Samane Kalhor
  • Majid Ghanaatshoar
  • Saeedeh Aliaskarisohi
Article
  • 60 Downloads

Abstract

We produced NiFeMo ribbons by electrodeposition technique under applied currents ranging from 40 to 240 mA. The SEM analysis showed a uniform and crack-free coating. Then, we measured the transverse and longitudinal magnetoimpedance of ribbons. We also obtained the hysteresis loops of the ribbons by means of magnetooptical Kerr effect to investigate their magnetic properties. The result showed that the increase in deposition current density caused a decline in the magnetic softness of the ribbons so that some of the ribbons exhibited an exchange spring effect. The magnetic hardening also caused a reduction in the magnetoimpedance response. We also theoretically calculated the susceptibility of a ribbon by considering the random magnetic anisotropy. The multi-peak behavior of susceptibility is in agreement with the multi-peak behavior of magnetoimpedance.

References

  1. 1.
    T.K. Das, P. Banerji, S.K. Mandal, Giant magnetoimpedance intrinsic impedance and voltage sensitivity of rapidly solidified Co\(_{66}\)Fe\(_2\)Cr\(_4\)Si\(_{13}\)B\(_{15}\) amorphous wire for highly sensitive sensors applications. Appl. Phys. A 122, 939 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    G.L.S. Vilela, J.G. Monsalve, A.R. Rodrigues, A. Azevedo, F.L.A. Machado, Giant magnetoimpedance effect in a thin-film multilayer meander-like sensor. J. Appl. Phys. 121, 124501 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    X. Sun, J. Du, Z. Zhu, J. Wang, Q. Liu, Enhanced GMI effect in NiZn-ferrite-modified Fe-based amorphous ribbons. Appl. Phys. A 119, 1277–1281 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    E.F. Silva, R.B. da Silva, M. Gamino, A.M.H. de Andrade, M. Vazquez, M.A. Correa, F. Bohn, Asymmetric magnetoimpedance effect in ferromagnetic multilayered biphase films. J. Magn. Magn. Mater. 393, 260–264 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Honkura, Development of amorphous wire type MI sensors for automobile use. J. Magn. Magn. Mater. 249, 375–381 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    G.V. Kurlyandskaya, M.L. Sanchez, B. Hernando, V.M. Prida, P. Gorria, M. Tejedor, Giant-magnetoimpedance-based sensitive element as a model for biosensors. Appl. Phys. Lett. 82, 3053–3055 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    T. Wang, Y. Zhou, C. Lei, J. Lei, Z. Yang, Development of an ingenious method for determination of dynabeads protein A based on a giant magnetoimpedance sensor. Sens. Actuat B Chem. 186, 727–733 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Vazquez, Soft magnetic wires. Phys. B 299, 302–313 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    C. Tannous, J. Gieraltowski, Giant magneto impedance and its applications. J. Mater. Sci. Mater. Electron. 15, 125–133 (2004)CrossRefGoogle Scholar
  10. 10.
    A. Zhukov, A. Chizhik, M. Ipatov, A. Talaat, J.M. Blanco, A. Stupakiewicz, V. Zhukova, Giant magnetoimpedance effect and domain wall dynamics in Co-rich amorphous microwires. J. Appl. Phys. 117, 043904 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    V. Zhukova, A. Talaat, M. Ipatov, J.J. Del Val, L. Gonzalez-Legarreta, B. Hernando, A. Zhukov, Effect of nanocrystallization on magnetic properties and GMI effect of Fe-rich microwires. J. Electron. Mater. 43, 4540–4547 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    R. Mardani, A. Amirabadizadeh, M. Ghanaatshoar, Angular dependence of giant magneto impedance and magnetic characteristic of Co-based wire in different magnetic field ranges. Mod. Phys. Lett. B 28, 1450197 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    A. Zhukov, M. Ipatov, M. Churyukanova, A. Talaat, J.M. Blanco, V. Zhukova, Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials. J. Alloys. Compd. (2017)Google Scholar
  14. 14.
    L. Xie, X. Li, J.T. Zou, H.L. Pan, W.H. Xie, Z.J. Zhao, Optimized giant magneto-impedance effect in electroless-deposited NiFeP/Cu composite wires. Surf. Coat. Technol (2017)Google Scholar
  15. 15.
    R. Kammouni, G.V. Kurlyandskaya, M. Vázquez, S.O. Volchkov, Magnetic properties and magnetoimpedance of short CuBe/CoFeNi electroplated microtubes. Sens. Actuat. A 248, 155–161 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Eggers, A. Leary, M. McHenry, J. Marcin, I. Škorvánek, H. Srikanth, M.H. Phan, Correlation between domain structure, surface anisotropy and high frequency magneto-impedance in Joule annealed CoFe-based melt-spun ribbons. J. Alloys. Compd. 682, 799–804 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Banerjee, R. Banerjee, A.K. Majumdar, A. Mookerjee, B. Sanyal, A.K. Nigam, Magnetism in NiFeMo disordered alloys: experiment and theory. Phys. B 405, 4287–4293 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    D. Oleksakova, P. Kollar, J. Fuzer, M. Kusy, S. Roth, K. Polanski, The influence of mechanical milling on structure and soft magnetic properties of NiFe and NiFeMo alloys. J. Magn. Magn. Mater. 316, 838–841 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    G. Nabiyouni, S. Saeidi, I. Kazeminezhad, Magnetic and nanostructural characteristics of electrodeposited supermalloy (Ni–Fe–Mo) thin films. Res. Rev. Mater. Sci. Chem. 1, 1–14 (2012)Google Scholar
  20. 20.
    J. Velleuer, A. Mun, H. Yakabchuka, C. Schiefer, A. Hackl, E. Kisker, Giant magneto impedance in electroplated NiFeMo/Cu microwires. J. Magn. Magn. Mater. 311, 651–657 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    A. Munoz, C. Schiefer, T. Nentwig, W. Man, E. Kiske, Magneto impedance of electroplated NiFeMo/Cu microwires for magnetic sensors. J. Appl. Phys. 40, 5013–5020 (2007)Google Scholar
  22. 22.
    Z.Q. Qiu, S.D. Bader, Surface magneto-optic Kerr effect. Rev. Sci. Instrum. 71, 1243–1255 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    M. Ghanaatshoar, N. Azad, M.H. Banitaba, B. Shokri, Giant magnetoimpedance effect of ac–dc Joule annealed electroplated NiFe/Cu composite wires. Phys. Status Solid C 8, 3055–3058 (2011)CrossRefGoogle Scholar
  24. 24.
    W.P. Taylor, M. Schneider, H. Baltes, M.G. Allen, A NiFeMo electroplating bath for micromachined structures. Electrochem. Solid State Lett. 2, 624–626 (1999)CrossRefGoogle Scholar
  25. 25.
    M. Banerjee, A.K. Majumdar, S. Rai, P. Tiwari, G.S. Lodha, A. Banerjee, K.G.M. Nair, J. Sarkar, R.J. Choudhary, D.M. Phase, Room temperature ferromagnetism down to 10 nanometer Ni–Fe–Mo alloy films. Thin Solid Films 545, 358–390 (2013)CrossRefGoogle Scholar
  26. 26.
    H. Wang, J. Yan, S. Li, X. Zhang, Q. Jiang, Noble-metal-free NiFeMo nanocatalyst for hydrogen generation from the decomposition of hydrous hydrazine. J. Mater. Chem. A 3, 121–124 (2014)CrossRefGoogle Scholar
  27. 27.
    H. Seet, X. Li, Z. Zhao, L. Wong, H. Zheng, K. Lee, Current density effect on magnetic properties of nanocrystalline electroplate Ni\(_{80}\)Fe\(_{20}\)/Cu composite wires. J. Magn. Magn. Mater. 302, 113–117 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    M.A. Islam, M. Moniruzzaman, Anomalous electrodeposition of Fe–Ni alloy coating from simple and complex baths and its magnetic property. Iium Eng. J. 10, 108–122 (2009)Google Scholar
  29. 29.
    A. Chizhik, C. Garcia, A. Zhukov, J. Gonzalez, L. Dominguez, J.M. Blancob, Investigation of surface magnetization reversal in Co-rich amorphous microwires with magneto-impedance effect. Phys. B 384, 5–8 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    V. Setoodeh, S.I. Hosseini, M. Ghanaatshoar, B. Shokri, Optical exchange spring effect in RF-annealed Fe-based amorphous ribbons. Phys. B 408, 39–42 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    E. Goto, N. Yahashi, T. Miyashita, K. Nakagawa, Magnetization and switching characteristics of composite thin films. J. Appl. Phys. 36, 2951–2958 (1965)ADSCrossRefGoogle Scholar
  32. 32.
    G. Kotagiri, S.D. Ramarao, G. Markandeyulu, Magnetoimpedance studies on laser and microwave annealed Fe\(_{66}\)Ni\(_7\)si\(_7\)B\(_{20}\) ribbons. J. Magn. Magn. Mater. 382, 43–48 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Z. Zhou, Y. Zhou, Y. Cao, The investigation of giant magnetoimpedance effect in meander NiFe/Cu/NiFe film. J. Magn. Magn. Mater. 320, 967–970 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    V. Zhukova, A. Zhukov, K.L. Garcia, V. Kraposhin, A. Prokoshin, J. Gonzalez, M. Vazquez, Magnetic properties and GMI of soft melt-extracted magnetic amorphous fibers. Sens. Actuat. A 106, 225–229 (2003)CrossRefGoogle Scholar
  35. 35.
    D. Atkinson, P.T. Squire, Phenonemological model for magnetoimpedance in soft ferromagnets. J. Appl. Phys. 83, 6569–6571 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    V. Panina, K. Mohri, T. Uchiyama, M. Noda, K. Bushida, Giant magneto-impedance in Co-rich amorphous wires and films. IEEE Trans. Magn. 31, 1249–1260 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    F.L.A. Machado, M. Rezende, A theoretical model for the giant magnetoimpedance in ribbons of amorphous soft-ferromagnetic alloys. J. Appl. Phys. 79, 6558–6560 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    R.L. Sommer, C.L. Chien, Giant magnetoimpedance effects in Metglas 2705M. J. Appl. Phys. 79, 5139–5141 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    S.Q. Xiao, Y.H. Liu, Y.Y. Dai, L. Zhang, S.X. Zhou, G.D. Liu, Giant magnetoimpedance effect in sandwiched films. J. Appl. Phys. 35, 4127–4130 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Samane Kalhor
    • 1
  • Majid Ghanaatshoar
    • 1
  • Saeedeh Aliaskarisohi
    • 2
  1. 1.Laser and Plasma Research InstituteShahid Beheshti UniversityTehranIran
  2. 2.Max-Planck-Institut für Dynamik und SelbstorganisationGöttingenGermany

Personalised recommendations