Applied Physics A

, 124:227 | Cite as

Formation of microstructures on Ni film surface by nanosecond laser irradiation

  • Kazuki Koda
  • Wataru Kobayashi
  • Hirokazu Imai
  • Masahiro Tsukamoto


The formation of microstructures on a Ni film surface by nanosecond laser irradiation was investigated. The microstructures were formed by the interaction between the laser-induced plume and the film surface. The laser process was conducted in air and under slight vacuum pressure. The microstructures were formed around the laser-irradiated area and transitioned from a layer to flocculating structures upon repeated laser irradiation. The conifer-like structure was formed by scanning the laser. In addition, it was not formed under low pressure as a result of which the confinement effect of the plume was weak. Surface and cross-sectional observation suggested that the diffusion of nanoparticles on the film surface shaped the topography of the microstructure.


  1. 1.
    H. Arai, K. Higuchi, T. Koyama, Fuji Electr. Rev. 61(4), 252–257 (2015)Google Scholar
  2. 2.
    P. Molitor, V. Barron, T. Young, Int. J. Adhes. Adhes. 21, 129 (2001)CrossRefGoogle Scholar
  3. 3.
    J.D. Venables, J. Mater. Sci. 19, 2431 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    E.-Y. Kim, J.-S. Kong, S.-K. An, H.-D. Kim, J. Adhes. Sci. Technol. 14, 1119 (2000)CrossRefGoogle Scholar
  5. 5.
    Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385 (2013)CrossRefGoogle Scholar
  6. 6.
    Y. Vorobyev, C.L. Guo, J. Nano Res. 14, 57 (2011)CrossRefGoogle Scholar
  7. 7.
    N. Balchev, T. Minkovski, M. Marinova, N. Shipochka, M. Sabotinov, Mater. Sci. Eng. B 135, 108 (2006)CrossRefGoogle Scholar
  8. 8.
    A. Pereira, A. Cros, P. Delaporte, W. Marine, M. Sentis, Appl. Surf. Sci. 208–209, 417 (2003)CrossRefGoogle Scholar
  9. 9.
    A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, M. Sentis, Appl. Phys. A 79, 1433 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A.L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, T. Sauvage, Thin Solid Films. 453–454, 16 (2004)CrossRefGoogle Scholar
  11. 11.
    A. Pereira, P. Delaporte, M. Sentis, W. Marine, A.L. Thomann, C. Boulmer-Leborgne, J. Appl. Phys. 98(6), 064902 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    J. Lin, S. Mahmood, T.L. Tan, S.V. Springham, P. Lee, R.S. Rawat, Nanotechnology 18, 115617 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    J. Lin, S. Mahmood, T. Zhang, S.M. Hassan, T. White, R.V. Ramanujan, P. Lee, R.S. Rawat, J. Phys. D. Appl. Phys. 40, 2548 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    N.G. Semaltianos, W. Perrie, Mater. Lett. 62, 2165 (2008)CrossRefGoogle Scholar
  15. 15.
    S.S. Harilal, C.V. Bindhu, M.S. Tillack, F. Najmabadi, A.C. Gaeris, J. Appl. Phys. 93, 2380 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kazuki Koda
    • 1
    • 2
  • Wataru Kobayashi
    • 1
  • Hirokazu Imai
    • 1
  • Masahiro Tsukamoto
    • 3
  1. 1.Semiconductor Packaging Reserach and DevelopmentDENSO CorporationKariyaJapan
  2. 2.Department of Mechanical Engineering, Graduate School of EngineeringOsaka UniversitySuitaJapan
  3. 3.Joining and Welding Research InstituteOsaka UniversityIbarakiJapan

Personalised recommendations