Advertisement

Applied Physics A

, 124:234 | Cite as

Band gap tuning of hydrogen- and oxygen-passivated zigzag graphene monoxide nanoribbon: ab initio computations

  • M. Yaghoobi Notash
  • A. Rastkar Ebrahimzadeh
  • J. Jahanbin Sardroodi
  • B. Ghavami
Article
  • 100 Downloads

Abstract

The electronic structure of a zigzag nanoribbon cutting obtained from graphene monoxide nanosheet was investigated by density functional theory method. The nanoribbons were passivated by hydrogen and/or oxygen atoms. The results contained equilibrium geometries, electronic structures, band structures and partial density of states (PDOS). These results show that the band gap of oxygen-passivated nanoribbon is smaller than those belong to the hydrogen-passivated one. These variations, along with other results, have been interpreted and treated on by variations in PDOS, hybridization of edge carbon atoms, spatial distribution and geometry of highest occupied molecular orbitals and lowest unoccupied molecular orbitals.

Notes

Acknowledgments

This work has been supported by a Grant/Research Fund Number 217/D/5666 from Azarbaijan Shahid Madani University.

References

  1. 1.
    E.C. Mattson et al., ACS Nano 5, 9710 (2011)CrossRefGoogle Scholar
  2. 2.
    H.H. Pu, S.H. Rhim, C.J. Hirschmugl, M. Gajdardziska-Josifovska, M. Weinert, J.H. Chen, Phys. Rev. B 87, 085417 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    J. Woo, K.-H. Yun, S.B. Cho, Y.-C. Chung, Phys. Chem. Chem. Phys. 16, 13477 (2014)CrossRefGoogle Scholar
  4. 4.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    M. Ezawa, Phys. Rev. B 73, 045432 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    C. Hu, R. Ogura, N. Onoda, S. Konabe, K. Watanabe, Phys. Rev. B 85, 245420 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    F. Zheng, G. Zhou, Z. Liu, J. Wu, W. Duan, B.-L. Gu, S.B. Zhang, Phys. Rev. B 78, 205415 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Y.-L. Song, Y. Zhang, J.-M. Zhang, D.-B. Lu, Appl. Surf. Sci. 256, 6313 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    H. Pan, Y.-W. Zhang, J. Mater. Chem. 22, 7280 (2012)CrossRefGoogle Scholar
  10. 10.
    Y. Li, Z. Zhou, S. Zhang, Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008)CrossRefGoogle Scholar
  11. 11.
    Y.H. Lu, R.Q. Wu, L. Shen, M. Yang, Z.D. Sha, Y.Q. Cai, P.M. He, Y.P. Feng, Appl. Phys. Lett. 94, 122111 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    B. Mandal, S. Sarkar, A. Pramanik, P. Sarkar, J. Appl. Phys. 112, 113710 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    P. Wagner et al., J. Phys. Chem. C 117, 26790 (2013)CrossRefGoogle Scholar
  14. 14.
    G. Lee, K. Cho, Phys. Rev. B 79, 165440 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    A.J. Simbeck, D. Gu, N. Kharche, P.V. Satyam, P. Avouris, S.K. Nayak, Phys. Rev. B 88, 035413 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M.S. José, A. Emilio, D.G. Julian, G. Alberto, J. Javier, O. Pablo, S.-P. Daniel, J. Phys. Condens. Matter 14, 2745 (2002)CrossRefGoogle Scholar
  17. 17.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. Yaghoobi Notash
    • 1
  • A. Rastkar Ebrahimzadeh
    • 1
  • J. Jahanbin Sardroodi
    • 2
  • B. Ghavami
    • 1
  1. 1.Molecular Simulation Laboratory, Department of Physics, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
  2. 2.Molecular Simulation Laboratory, Department of Chemistry, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations