Applied Physics A

, 124:240 | Cite as

Carrier-induced ferromagnetism in half-metallic Co-doped ZnS-diluted magnetic semiconductor: a DFT study



Systematic experimental and theoretical calculations have been performed to investigate the origin of the carrier-induced ferromagnetism in the Co-doped ZnS-diluted magnetic semiconductors. The crystalline structure, morphology of the chemically synthesized Co-doped ZnS nanoparticles are evaluated using X-ray diffraction (XRD) and transmission electron microscopy (TEM) and obtained the average crystallite size in the range 5–8 nm. Fourier transform-infrared spectra reveal the characteristic Zn–S vibrations of cubic ZnS and also show the splitting of peaks with increasing Co concentration which indicates that the Co-doping level beyond 3% affects the structure of ZnS. The room temperature ferromagnetic behavior analyzed by MH curve exhibited up to the doping level 5%, achieving due to the indirect ‘pd’ exchange interactions between the localized ‘d’ spins of Co2+ ion and the free-delocalized carriers in the host lattice. The existence of the antiferromagnetic coupling is discernable beyond the 5% doping level, owing to the short-range super-exchange interactions between the characteristic ‘d’ spins of the Co2+ ions which minimize the ferromagnetic ordering. Band structure and density of states (DOS) calculations demonstrate the pd hybridization mechanism in Co-doped ZnS system which is the main cause of realizing ferromagnetic ordering in the system and also shows the half-metallic characteristics with the combination of semiconducting and metallic nature in the spin-up and spin-down states, respectively.


  1. 1.
    N. Eryong, L. Donglai, Z. Yunsen, B. Xue, Y. Liang, J. Yong, J. Zhifeng, S. Xiaosong, Appl. Surf. Sci. 257, 8762 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    S.V. Nistor, M. Stefan, L.C. Nistor, D. Ghica, I.D. Vlaicu, J. Alloys Compd. 662, 193 (2016)CrossRefGoogle Scholar
  3. 3.
    V.D. Mote, J.S. Dargad, B.N. Dole, Nanosci. Nanoeng. 1, 116 (2013)Google Scholar
  4. 4.
    B. Poornaprakash, P.T. Poojitha, U. Chalapathi, S.-H. Park, Mater. Lett. 181, 227 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Kumar, N.K. Verma, J. Supercond. Nov. Magn. 28, 137 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Kobayashi, O.F. Sankey, J.D. Dow, Phys. Rev. B 28, 2 (1983)Google Scholar
  7. 7.
    M.S. Akhtar, Y.G. Alghamdi, M.A. Malik, R.M. Arif, S. Khalil, S. Riaz, Naseem, J. Mater. Chem. C 3, 6755 (2015)CrossRefGoogle Scholar
  8. 8.
    P.C. Patel, S. Ghosh, P.C. Srivastava, J. Mater. Sci. 50, 7919 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    B. Poornaprakash, S. Sambasivam, D. Amaranatha Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Ceram. Int. 40, 2677 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Shamsipur, H.R. Rajabi, O. Khani, Mater. Sci. Semicond. Process. 16, 1154 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Mandal, A. Dandapat, G. De, Analyst 137, 765 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    V. Gandhi, R. Ganesan, H. Hameed Abdulrahman Syedahamed, M. Thaiyan, J. Phys. Chem. C 118, 9715 (2014)CrossRefGoogle Scholar
  13. 13.
    J.C. Johnson, H. Yan, P. Yang, R.J. Saykally, J. Phys. Chem. B 107, 8816 (2003)CrossRefGoogle Scholar
  14. 14.
    Z. Fan, J.G. Lu, Appl. Phys. Lett. 86, 123510 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    P.V. Radovanovic, D.R. Gamelin, Phys. Rev. Lett. 91, 157202 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Y.M. Cho, W.K. Choo, H. Kim, D. Kim, Y. Ihm, Appl. Phys. Lett. 80, 3358 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    S.P. Patel, J.C. Pivin, M.K. Patel, J. Wonc, R. Chandra, D. Kanjilal, L. Kumar, J. Magn. Magn. Mater. 323, 2734 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Q. Mahmood, S.M. Alay-e-Abbas, M. Hassan, N.A. Noor, J. Alloys Compd. 688, 899–907 (2016)CrossRefGoogle Scholar
  19. 19.
    M. Khalkhali, Q. Liu, H. Zeng, H. Zhang, Sci. Rep. 5, 14267 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Sambasivam, D. PaulJoseph, J.G. Lin, C. Venkateswaran, J. Solid State Chem. 182, 2598 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    D. Amaranatha Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Appl. Phys. A 105, 119 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    D. Saikia, R.D. Raland, J.P. Borah, Phys. E 83, 56 (2016)CrossRefGoogle Scholar
  23. 23.
    P. Kaur, S. Kumar, A. Singh, C.L. Chen, C.L. Dong, T.S. Chan, K.P. Lee, C. Srivastava, S.M. Rao, M.K. Wu, Superlattices Microstruct. 83, 785 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    A. Goktas, I.H. Mutlu, J. Sol Gel Sci. Technol. 69, 120 (2014)CrossRefGoogle Scholar
  25. 25.
    B. Poornaprakash, D. Amaranatha Reddy, G. Murali, N. Madhusudhana Rao, R.P. Vijayalakshmi, B.K. Reddy, J. Alloys Compd. 577, 79 (2013)CrossRefGoogle Scholar
  26. 26.
    N.G. Imam, M.B. Mohamed, Superlattices Microstruct. 73, 203 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    N.G. Jovic, A.S. Masadeh, A.S. Kremenovic, B.V. Antic, J.L. Blanusa, N.D. Cvjeticanin, G.F. Goya, M.V. Antisari, E.S. Bozin, J. Phys. Chem. 113, 20559 (2009)Google Scholar
  28. 28.
    L. Kumar, P. Kumar, A. Narayan, M. Kar, Int. Nano Lett. 3, 8 (2013)CrossRefGoogle Scholar
  29. 29.
    L. Vegard, Z. Phys. A Hadron. Nucl. 5, 17 (1921)Google Scholar
  30. 30.
    V.D. Mote, Y. Purushotham, B.N. Dole, Cerâmica 59, 395–400 (2013)CrossRefGoogle Scholar
  31. 31.
    C.N.R. Rao, A. Muller, A.K. Cheetham eds. The Chemistry of Nanomaterials (John Wiley and Sons, Inc., Hoboken, 2005)Google Scholar
  32. 32.
    W. Cheng, X. Ma, J. Phys. Conf. Ser. 152, 012039 (2009)CrossRefGoogle Scholar
  33. 33.
    C. Gammer, C. Mangler, C. Rentenberger, H.P. Karnthaler, Scr. Mater. 63, 312 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Blackman, Math. Phys. Sci. 173, 68 (1939)CrossRefGoogle Scholar
  35. 35.
    D. Geist, C. Gammer, C. Rentenberger, H.P. Karnthaler, J. Alloys Compd. 621, 371 (2015)CrossRefGoogle Scholar
  36. 36.
    R. Sahraei, S. Darafarin, J. Lumin. 149, 170 (2014)CrossRefGoogle Scholar
  37. 37.
    Z. Rui, L. Yingbo, S. Shuqing, Opt. Mater. 34, 1788 (2012)CrossRefGoogle Scholar
  38. 38.
    D. Amaranatha Reddy, A. Diviya, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Phys. B. 406, 1944 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    M. Belhaj, C. Dridi, H. Elhouichet, J. Cristophe Valmalette, J. Appl. Phys. 119, 095501 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    J. Kaur, M. Sharma, O.P. Pandey, Opt. Mater. 47, 7 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    S. Colis, H. Bieber, S.B. Colin, G. Schmerber, C. Leuvrey, A. Dinia, Chem. Phys. Lett. 422, 529 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Y. Liu, Z. Li, W. Zhong, L. Zhang, W. Chen, Q. Li, Nanoscale Res. Lett. 9, 389 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    J.K. Salem, T.M. Hammad, S. Kuhn, M.A. Draaz, N.K. Hejazy, R. Hempelmann, J. Mater. Sci. Mater. Electron. 25, 2177 (2014)CrossRefGoogle Scholar
  44. 44.
    A.A. Bol, A. Meijerink, Phys. Rev. B 58, R15997 (1998)ADSCrossRefGoogle Scholar
  45. 45.
    X. Wang, J. Shi, Z. Feng, M. Li, C. Li, Phys. Chem. Chem. Phys. 13, 715 (2011)Google Scholar
  46. 46.
    W.G. Becker, A.J. Bard, J. Phys. Chem. 87, 4888 (1983)CrossRefGoogle Scholar
  47. 47.
    A. Virpal, S. Hastir, R.C. Sharma, Singh, Appl. Surf. Sci. 372, 57 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    K. Deepa, A.C. Dhanya, T.L. Remadevi, J. Mater. Sci. Mater. Electron. 25, 1214 (2014)CrossRefGoogle Scholar
  49. 49.
    D. Saikia, J.P. Borah, J. Mater. Sci. Mater. Electron. 28, 8029 (2017)CrossRefGoogle Scholar
  50. 50.
    M. Murase, R. Jagannathan, Y. Kanematsu, M. Watanave, A. Kurita, K. Hirita, T. Yazava, T. Kushida, J. Phys. Chem. B 103, 754 (1999)CrossRefGoogle Scholar
  51. 51.
    Y. Uehara, J. Chem. Phys. 51, 4385 (1969)ADSCrossRefGoogle Scholar
  52. 52.
    D. Denzler, M. Olschewski, K. Sattler, J. Appl. Phys. 84, 2841 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    H. Chen, Y. Hu, X. Zeng, J. Mater. Sci. 46, 2715 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    P. Iranmanesha, S. Saeedniab, M. Nourzpoora, Chin. Phys. B. 24, 046104 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    G.J. Lee, S. Anandan, S.J. Masten, J.J. Wu, Ind. Eng. Chem. Res. 53, 8766 (2014)CrossRefGoogle Scholar
  56. 56.
    M. Abdelaziz, E.M. Abdelrazek, Phys. B 390, 1 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    D. Saikia, J.P. Borah, M. Jangra, A. Puzari, Indian J. Phys. 90, 549 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    S. Ummartyotin, N. Bunnak, J. Juntaro, M. Sain, H. Manuspiya, Solid State Sci. 14, 299 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    Z. Jindal, N.K. Verma, J. Mater. Sci. 43, 6539 (2008)ADSCrossRefGoogle Scholar
  60. 60.
    W.Z. Xiao, L.L. Wang, Q.Y. Rong, G. Xiao, B. Meng, J. Appl. Phys. 115, 213905 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    K.R. Gunasekhar, S. Kumar, N.K. Verma, J. Supercond. Nov. Magn. 28, 137 (2015)CrossRefGoogle Scholar
  62. 62.
    P. Yang, M.K. Lhu, D. Xu, D. Yuan, J. Chang, G.J. Zhou, M. Pan, Appl. Phys. A. 74, 257 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    J. Schneider, R.D. Kirby, Phys. Rev. B 6, 1290 (1972)ADSCrossRefGoogle Scholar
  64. 64.
    H. Akai, T. Kamatani, S. Watanabe, J. Phys. Soc. Jpn. 69, 119 (2000)Google Scholar
  65. 65.
    P.W. Anderson, Phys. Rev. 79, 350 (1950)ADSCrossRefGoogle Scholar
  66. 66.
    S. Kumar, C.L. Chen, C.L. Dong, Y.K. Ho, J.F. Lee, T.S. Chan, R. Thangavel, T.K. Chen, B.H. Mok, S.M. Rao, M.K. Wu, J. Alloys Compd. 554, 357 (2013)CrossRefGoogle Scholar
  67. 67.
    P.K. Sharma, R.K. Dutta, A.C. Pandey, J. Colloid Interface Sci. 345, 149 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    P.K. Sharma, R.K. Dutta, A.C. Pandey, S. Layek, H.C. Verma, J. Magn. Magn. Mater. 321, 2587 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    G. Murali, D.A. Reddy, B. Poornaprakash, R.P. Vijayalakshmi, B.K. Reddy, R. Venugopal, Phys. B. 407, 2084 (2012)ADSCrossRefGoogle Scholar
  70. 70.
    R.A. Torquato, E.S. Shirsath, R.H.G.A. Kiminami, A.C.F.M. Costa, Ceram. Int. 40, 6553 (2014)CrossRefGoogle Scholar
  71. 71.
    K.K. Nishad, R.K. Pandey, Mater. Sci. Eng. B. 178, 1380 (2013)CrossRefGoogle Scholar
  72. 72.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009)CrossRefGoogle Scholar
  73. 73.
    P.K. Das, N. Mandal, A. Arya, J. Appl. Phys. 121, 085101 (2017)ADSCrossRefGoogle Scholar
  74. 74.
    Y. Wang, J.P. Perdew, Phys. Rev. B 44, 13298 (1991)ADSCrossRefGoogle Scholar
  75. 75.
    H.H. Pham, G.T. Barkema, L.W. Wang, Phys. Chem. Chem. Phys. 17(39), 26270 (2015)CrossRefGoogle Scholar
  76. 76.
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)ADSCrossRefGoogle Scholar
  77. 77.
    H. Thomas, J. Fischer, Almlof, J. Phys. Chem. 96, 9768 (1992)CrossRefGoogle Scholar
  78. 78.
    H.Q. Xie, L.J. Tang, J.L. Tang, P. Peng, J. Magn. Magn. Mater. 377, 239 (2015)ADSCrossRefGoogle Scholar
  79. 79.
    R. Long, N.J. English, Phys. Rev. B. 80, 115212 (2009)ADSCrossRefGoogle Scholar
  80. 80.
    H. Pan, Y.P. Feng, Q.Y. Wu, Z.G. Huang, J. Lin, Phys. Rev. B. 77, 125211 (2008)ADSCrossRefGoogle Scholar
  81. 81.
    S.W. Fan, K.L. Yao, Z.L. Liu, Appl. Phys. Lett. 94, 152506 (2009)ADSCrossRefGoogle Scholar
  82. 82.
    C.W. Zhang, S.S. Yan, J. Appl. Phys. 107, 043913 (2010)ADSCrossRefGoogle Scholar
  83. 83.
    S. Fathhoor Rabbani, I.B. Shameem Banu, Comput. Mater. Sci. 101, 281 (2015)CrossRefGoogle Scholar
  84. 84.
    P. Eckelt, O. Madelung, J. Treusch, Phys. Rev. Lett. 18, 16 (1967)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology NagalandDimapurIndia

Personalised recommendations