Applied Physics A

, 124:223 | Cite as

Properties of Al- and Ga-doped thin zinc oxide films treated with UV laser radiation

  • Hayder J. Al-Asedy
  • Shuruq A. Al-Khafaji
  • Hazri Bakhtiar
  • Noriah Bidin


This paper reports the Nd:YAG laser irradiation treated modified properties of aluminum (Al) and gallium (Ga) co-doped zinc oxide (ZnO) (AGZO) films prepared on Si-substrate via combined sol–gel and spin-coating method. The impact of varying laser energy (150–200 mJ) on the structure, morphology, electrical and optical properties of such AGZO films were determined. Laser-treated samples were characterized using various analytical tools. Present techniques could achieve a high-quality polycrystalline films compared with those produced via conventional high temperature processing. AGZO films irradiated with third harmonics UV radiation (355 nm) from Nd:YAG laser source revealed very low resistivity of 4.02 × 10− 3 Ω cm. The structural properties grain size was calculated firm the X-ray diffraction spectra using the Scherrer equation that increased from 12.7 to 22.5 nm as the annealing laser energy increased from (150–200) mJ. The differences in crystallinity and orientation are explained in terms of the thermal effect caused by laser irradiation. (FESEM) images have been demonstrated that Nd:YAG laser annealing can significantly improve the crystallinity level, densification, and surface flatness of sol–gel derived AGZO thin films that occurred as a result of laser processing. Synthesized AGZO films displayed favorable growth orientation along (101) lattice direction. AGZO films with energy band gap of 3.37–3.41 eV were obtained. Results on the crystallinity, surface morphology, roughness, bonding vibration, absorption, photoluminescence, and resistivity of the laser-irradiated films were analyzed and discussed.



The authors are grateful to the Malaysian Government for providing the financial support through FRGS vote 4F815 in this project. Thanks to RMC and UTM for monitoring the research progress and fund managements and the performance of the project. Thanks are also extended to the Higher Education and Scientific Research, University of Al-Qadisiyah, Faculty of Education, Physics Department of Iraq, for providing PhD study leave.


  1. 1.
    S.Y. Myong, S.J. Baik, C.H. Lee, W.Y. Cho, K.S. Lim, Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3 (6H2O) as new doping material. Jpn. J. Appl. Phys. 36(8B), L1078 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    M.N. Islam, T. Ghosh, K. Chopra, H. Acharya, XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films. Thin Solid Films 280(1), 20–25 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Ohya, H. Saiki, T. Tanaka, Y. Takahashi, Microstructure of TiO2 and ZnO films fabricated by the sol–gel method. J. Am. Ceram. Soc. 79(4), 825–830 (1996)CrossRefGoogle Scholar
  4. 4.
    Y. Ohya, H. Saiki, Y. Takahashi, Preparation of transparent, electrically conducting ZnO film from zinc acetate and alkoxide. J. Mater. Sci. 29(15), 4099–4103 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z. Tang, P. Yu, G. Wong, Growth of ZnO thin film by laser MBE: lasing of exciton at room temperature. physica status solidi (b). 202(2), 669–672 (1997)Google Scholar
  6. 6.
    P. Zu, Z. Tang, G.K. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature. Solid State Commun. 103(8), 459–463 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    K. Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, B. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79(10), 7983–7990 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    K. Vanheusden, C. Seager, W. Warren, D. Tallant, J. Caruso, M. Hampden-Smith, T. Kodas, Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis. J. Lumin. 75(1), 11–16 (1997)CrossRefGoogle Scholar
  9. 9.
    D. Bao, H. Gu, A. Kuang, Sol–gel-derived c-axis oriented ZnO thin films. Thin solid films. 312(1), 37–39 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    X. Jiang, F. Wong, M. Fung, S. Lee, Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Lett. 83(9), 1875–1877 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    N. Giebink, Y. Sun, S. Forrest, Transient analysis of triplet exciton dynamics in amorphous organic semiconductor thin films. Org. Electron. 7(5), 375–386 (2006)CrossRefGoogle Scholar
  12. 12.
    H. Kim, A. Pique, J. Horwitz, H. Murata, Z. Kafafi, C. Gilmore, D. Chrisey, Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films. 377, 798–802 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    W. Lee, S. Shin, D.-R. Jung, J. Kim, C. Nahm, T. Moon, B. Park, Investigation of electronic and optical properties in Al–Ga codoped ZnO thin films. Curr. Appl. Phys. 12(3), 628–631 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    T. Minami, Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    T. Minami, Substitution of transparent conducting oxide thin films for indium tin oxide transparent electrode applications. Thin Solid Films. 516(7), 1314–1321 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    T. Minami, K. Okada, T. Miyata, J. Nomoto, Y. Hara, H. Abe, Transparent conducting impurity-doped ZnO thin films prepared using oxide targets sintered by millimeter-wave heating. J. Vac. Sci. Technol. A. 27(4), 1006–1011 (2009)CrossRefGoogle Scholar
  17. 17.
    D.-W. Kang, S.-J. Kim, T.-H. Moon, H.-M. Lee, M.-K. Han, Effect of Ga doping on transparent and conductive Al-doped ZnO films prepared using magnetron cosputtering. Jpn. J. Appl. Phys. 49(12R), 125801 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    J.-P. Kim, J.-S. Bae, T.-E. Hong, M.-S. Won, J.-H. Yoon, B.-S. Lee, H.-J. Lee, Optical and electrical properties of ZnO films, codoped with Al and Ga deposited at room temperature by an RF sputtering method. Thin Solid Films. 518(22), 6179–6183 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    M. Park, S.M. Han, Enhancement in conductivity through Ga, Al dual doping of ZnO nanofibers. Thin Solid Films. 590, 307–310 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    O. Lupan, L. Chow, S. Shishiyanu, E. Monaico, T. Shishiyanu, V. Şontea, B.R. Cuenya, A. Naitabdi, S. Park, A. Schulte, Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications. Mater. Res. Bull. 44(1), 63–69 (2009)CrossRefGoogle Scholar
  21. 21.
    G. Jimenez-Cadena, E. Comini, M. Ferroni, A. Vomiero, G. Sberveglieri, Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells. Mater. Chem. Phys. 124(1), 694–698 (2010)CrossRefGoogle Scholar
  22. 22.
    J.-J. Wu, S.-C. Liu, Catalyst-free growth and characterization of ZnO nanorods. J. Phys. Chem. B. 106(37), 9546–9551 (2002)CrossRefGoogle Scholar
  23. 23.
    W.I. Park, D.H. Kim, S.-W. Jung, G.-C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Appl. Phys. Lett. 80(22), 4232–4234 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    J. Zheng, Q. Jiang, J. Lian, Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method. Appl. Surf. Sci. 257(11), 5083–5087 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    A.D. Chandra, K. Debdulal, S. Fouran, A.D. Kumar, G. Pellegrini, C. Ramesh, M. Paolo, Synthesis of ZnO nanostructures using different metal catalyst: morphology and photoluminescence characteristics. J. Nanosci. Nanotechnol. 10(4), 2933–2937 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Lee, A. Easteal, U. Pal, D. Bhattacharyya, Evolution of ZnO nanostructures in sol–gel synthesis. Curr. Appl. Phys. 9(4), 792–796 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    J. Chatelon, C. Terrier, E. Bernstein, R. Berjoan, J. Roger, Morphology of SnO 2 thin films obtaibed by the sol–gel technique. Thin Solid Films 247(2), 162–168 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    W.M. Tsang, F.L. Wong, M.K. Fung, J. Chang, C.S. Lee, S.T. Lee, Transparent conducting aluminum-doped zinc oxide thin film prepared by sol–gel process followed by laser irradiation treatment. Thin Solid Films 517(2), 891–895 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    H. Imai, A. Tominaga, H. Hirashima, M. Toki, M. Aizawa, Ultraviolet-laser-induced crystallization of sol–gel derived indium oxide films. J. Sol Gel Sci. Technol. 13(1), 991–994 (1998)CrossRefGoogle Scholar
  30. 30.
    T. Szörényi, L. Laude, I. Bertoti, Z. Kantor, Z. Geretovszky, Excimer laser processing of indium-tin-oxide films: an optical investigation. J. Appl. Phys. 78(10), 6211–6219 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    J. Sengupta, R. Sahoo, C. Mukherjee, Effect of annealing on the structural, topographical and optical properties of sol–gel derived ZnO and AZO thin films. Mater. Lett. 83, 84–87 (2012)CrossRefGoogle Scholar
  32. 32.
    T. Nagase, T. Ooie, J. Sakakibara, A novel approach to prepare zinc oxide films: excimer laser irradiation of sol–gel derived precursor films. Thin Solid Films 357(2), 151–158 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    W.-T. Hsiao, S.-F. Tseng, C.-H. Kuo, K.-C. Huang, D. Chiang, P.-C. Yao, M.-F. Chen, Fabrication of electrodes on the aluminum doped zinc oxide thin films using an ultraviolet laser direct-patterning technology. Phys. Proc. 19, 456–465 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    W.-T. Hsiao, S.-F. Tseng, K.-C. Huang, D. Chiang, Electrode patterning and annealing processes of aluminum-doped zinc oxide thin films using a UV laser system. Opt. Lasers Eng. 51(1), 15–22 (2013)CrossRefGoogle Scholar
  35. 35.
    S.A. Van Slyke, C. Chen, C.W. Tang, Organic electroluminescent devices with improved stability. Appl. Phys. Lett. 69(15), 2160–2162 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    H.-C. Cheng, C.-F. Chen, C.-Y. Tsay, J.-P. Leu, High oriented ZnO films by sol–gel and chemical bath deposition combination method. J. Alloy. Compd. 475(1), L46–L49 (2009)CrossRefGoogle Scholar
  37. 37.
    D. Bao, H. Gu, A. Kuang, Sol–gel-derived c-axis oriented ZnO thin films. Thin solid films 312(1–2), 37–39 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    C.-Y. Tsay, M.-C. Wang, Structural and optical studies on sol–gel derived ZnO thin films by excimer laser annealing. Ceram. Int. 39(1), 469–474 (2013)CrossRefGoogle Scholar
  39. 39.
    V. Kumar, R. Singh, N. Singh, A. Kapoor, R. Mehra, L. Purohit, Synthesis and characterization of aluminum–boron co-doped ZnO nanostructures. Mater. Res. Bull. 48(2), 362–366 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Gondal, Q. Drmosh, Z. Yamani, T. Saleh, Synthesis of ZnO 2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles. Appl. Surf. Sci. 256(1), 298–304 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    D. Behera, B. Acharya, Nano-star formation in Al-doped ZnO thin film deposited by dip-dry method and its characterization using atomic force microscopy, electron probe microscopy, photoluminescence and laser Raman spectroscopy. J. lumin. 128(10), 1577–1586 (2008)CrossRefGoogle Scholar
  42. 42.
    N. Avci, P.F. Smet, J. Lauwaert, H. Vrielinck, D. Poelman, Optical and structural properties of aluminium oxide thin films prepared by a non-aqueous sol–gel technique. J. Sol Gel Sci. Technol. 59(2), 327–333 (2011)CrossRefGoogle Scholar
  43. 43.
    N. Ozer, J.P. Cronin, Y.-J. Yao, A.P. Tomsia, Optical properties of sol–gel deposited Al2O3 films. Sol. Energy Mater. Sol. Cells. 59(4), 355–366 (1999)CrossRefGoogle Scholar
  44. 44.
    T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Optical characterization of sol–gel ZnO:Al thin films. Superlattices Microstruct. 85, 101–111 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    K. Murali, P. Thirumoorthy, Characteristics of sol–gel deposited alumina films. J. Alloy. Compd. 500(1), 93–95 (2010)CrossRefGoogle Scholar
  46. 46.
    X. Wang, B. Dong, M. Lei, Infrared absorption spectra of Er 3+-doped Al2O3 nanopowders by the sol–gel method. J. Sol Gel Sci. Technol. 39(3), 307–311 (2006)CrossRefGoogle Scholar
  47. 47.
    Q. Xu, R. Hong, H. Huang, Z. Zhang, M. Zhang, X. Chen, Z.Y. Wu, Laser annealing effect on optical and electrical properties of Al doped ZnO films. Opt. Laser Technol. 45, 513–517 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    C. Pan, C. Tu, C. Tun, C. Lee, G. Chi, Structural and optical properties of ZnO epilayers grown by plasma-assisted molecular beam epitaxy on GaN/sapphire (0001). J. Cryst Growth 305(1), 133–136 (2007)ADSCrossRefGoogle Scholar
  49. 49.
    X. Wei, B. Man, M. Liu, C. Xue, H. Zhuang, C. Yang, Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2. Phys. B 388(1), 145–152 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    Z. Lei, J.-S. Lian, Y.-H. Liu, Q. Jiang, Influence of preparation methods on photoluminescence properties of ZnO films on quartz glass. Trans. Nonferr. Met. Soc. China. 18(1), 145–149 (2008)CrossRefGoogle Scholar
  51. 51.
    W. Cheng, P. Wu, X. Zou, T. Xiao, Study on synthesis and blue emission mechanism of ZnO tetrapod like nanostructures. J. Appl. Phys. 100(5), 054311 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10(1), 013001 (2009)CrossRefGoogle Scholar
  53. 53.
    B. Ngom, T. Mpahane, N. Manyala, O. Nemraoui, U. Buttner, J. Kana, A. Fasasi, M. Maaza, A. Beye, Structural and optical properties of nano-structured tungsten-doped ZnO thin films grown by pulsed laser deposition. Appl. Surf. Sci. 255(7), 4153–4158 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, S. Menakh, Y. Bouachiba, T. Kerdja, C. Benazzouz, M. Bouafia, S. Amara, Effect of substrates on the properties of ZnO thin films grown by pulsed laser deposition. Adv. Mater. Phys. Chem. 3(04), 209 (2013)CrossRefGoogle Scholar
  55. 55.
    C. Li, M. Furuta, T. Matsuda, T. Hiramatsu, H. Furuta, T. Hirao, Effects of substrate on the structural, electrical and optical properties of Al-doped ZnO films prepared by radio frequency magnetron sputtering. Thin Solid Films 517(11), 3265–3268 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    W. Wang, C. Li, J. Zhang, X. Diao, Effects of atomic oxygen treatment on structures, morphologies and electrical properties of ZnO:Al films. Appl. Surf. Sci. 256(14), 4527–4532 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    J. Kim, T. Sekiya, N. Miyokawa, N. Watanabe, K. Kimoto, K. Ide, Y. Toda, S. Ueda, N. Ohashi, H. Hiramatsu, Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor. NPG Asia Mater. 9(3), e359 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hayder J. Al-Asedy
    • 1
    • 2
    • 3
  • Shuruq A. Al-Khafaji
    • 4
  • Hazri Bakhtiar
    • 1
  • Noriah Bidin
    • 1
  1. 1.Laser Center, Ibnu Sina Institute for Scientific and Industrial ResearchUniversity Technology MalaysiaJohor BahruMalaysia
  2. 2.Department of Physics, Faculty of ScienceUniversiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Physics Department, Faculty of EducationUniversity of Al-QadisiyahDiwaniyahIraq
  4. 4.Roads and Transports Department, Faculty of EngineeringUniversity of Al-QadisiyahDiwaniyahIraq

Personalised recommendations