Advertisement

Applied Physics A

, 124:256 | Cite as

In vitro bioactivity, tribological property, and antibacterial ability of Ca–Si-based coatings doped with cu particles in-situ fabricated by laser cladding

  • Baoping Hou
  • Zhao Yang
  • Yuling Yang
  • Erlin Zhang
  • Gaowu Qin
Article
  • 110 Downloads

Abstract

The present study aimed to in-situ fabricate Ca–Si-based coatings doped with copper particles (Cu–CS coatings) to enhance in vitro bioactivity, tribological property, and antibacterial ability of Ti-6Al-4V alloy. The effects of copper addition on the multiple properties were evaluated. Our results showed that Ca2SiO4, CaTiO3, and Cu2O were in-situ fabricated after laser processing. The Cu–CS coatings exhibited an excellent wear resistance and enhanced wettability. Regarding the in vitro bioactivity, after soaking in simulated body fluid, Cu–CS coatings developed an apatite surface layer that was reduced in the coatings with higher weight percent Cu addition. The Cu–CS coatings enhanced the inhibitory action against E. coli strains, especially for the coating with a higher concentration of Cu in it. Hence, the synthesized Cu–CS coatings present excellent tribological properties, enhanced bioactivity, and antibacterial property, and, therefore, would be used to modify the surface properties of Ti-6Al-4V implants for bone tissue engineering applications.

Notes

Acknowledgements

The work described in this paper is financially supported by the Natural Science Foundation of Liaoning province (no. 201602264), the National Natural Science Foundation of China (no. 51525101), and Funding from Northeastern University, China (985 program, N141008001).

References

  1. 1.
    Y. Wang, H.M. Wang, Appl. Surf. Sci. 229, 81–86 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Q. Meng, L. Geng, D. Ni, Mater. Lett. 59, 2774–2777 (2005)CrossRefGoogle Scholar
  3. 3.
    D.E. Wolfe, J. Singh, J. Sendenson, Adv. Mater. Pro. 158, 41–44 (2000)Google Scholar
  4. 4.
    C.H.J. Hager, J.H. Sanders, S. Sharma, Wear 265, 439–451 (2008)CrossRefGoogle Scholar
  5. 5.
    K. Feng, Y.B. Wang, Z.G. Li, P.K. Chu, Mater. Charact. 106, 11–19 (2015)CrossRefGoogle Scholar
  6. 6.
    C.Y. Chen, D. Dai, G.X. Chen, J.H. Yu, K. Nishimura, C.T. Lin, N. Jiang, Z.L. Zhan, Appl. Surf. Sci. 346, 41–45 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    F.K. Mirzade, V.G. Niziev, V.Y. Panchenko, M.D. Khomeko, R.V. Grishaev, S. Pityana, C.V. Rooyen, Phys. B Condens. Mater. 423, 69–76 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    P.L. Zhang, X.P. Liu, Appl. Surf. Sci. 311, 709–714. (2014)CrossRefGoogle Scholar
  9. 9.
    Y.J. Dong, H.M. Wang, Surf. Coat. Technol. 204, 731–735 (2009)CrossRefGoogle Scholar
  10. 10.
    J.N. Li, C.Z. Chen, T. Squartini, Q.S. He, Appl. Surf. Sci. 257, 1550–1555(2010)ADSCrossRefGoogle Scholar
  11. 11.
    Y.W. Sun, M.Z. Hao, Opt. Laser. Eng. 50, 985–995. (2012)ADSCrossRefGoogle Scholar
  12. 12.
    D. Correa, A. Almirall, R. García-Carrodeguas, L.A. Santos, A.H.D. Aza, J. Parra, J.A. Delgado, J. Biomed. Mater. Res. Part A 102, 3693–3703(2014)CrossRefGoogle Scholar
  13. 13.
    E.M. Carlise, Science 178, 619–621. (1972)ADSCrossRefGoogle Scholar
  14. 14.
    K. Schwarz, D. Milne, Nature 239, 333–339. (1972)ADSCrossRefGoogle Scholar
  15. 15.
    C. Seaborn, F. Nielson, Biol. Trace Elem. Res. 251–261, 89 (2002)Google Scholar
  16. 16.
    H.C. Li, D.G. Wang, J.H. Hu, C.Z. Chen, Mater. Sci. Eng. C 35, 171–178 (2014)CrossRefGoogle Scholar
  17. 17.
    H.C. Li, D.G. Wang, C.Z. Chen, F. Weng, H. Shi, Mater. Lett. 157, 139–142 (2015)CrossRefGoogle Scholar
  18. 18.
    F. Zuleta, P.A. Velasquez, P.N. De Aza, Mater. Sci. Eng. C 31, 377–383 (2011)CrossRefGoogle Scholar
  19. 19.
    C.R. Arciola, F.I. Alvi, Y.H. An, D. Campoccia, L. Montanaro, Int. J. Artif. Org. 28, 1119–1125. (2005)CrossRefGoogle Scholar
  20. 20.
    Y.F. Ivanov, N.N. Koval, O.V. Krysina, T. Baumbach, S. Doyle, T. Slobodsky, N.A. Timchenko, R.M. Galimov, A.N. Shmakov, Surf. Coat. Technol. 207, 430–434. (2012)CrossRefGoogle Scholar
  21. 21.
    S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Thin Solid Films 1–29, 476 (2005)Google Scholar
  22. 22.
    X.H. Yao, X.Y. Zhang, H.B. Wu, Appl. Surf. Sci. 292, 944–947 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Huang, M. Hao, X.F. Nian, H.X. Qiao, X.J. Zhang, X.Y. Zhang, G.Q. Song, J.C. Guo, X.F. Pang, H.L. Zhang, Ceram. Int. 42, 11876–11888. (2016)CrossRefGoogle Scholar
  24. 24.
    H.B. Wu, X.Y. Zhang, X.J. He, M. Li, X.B. Huang, R.Q. Hang, B. Tang, Appl. Surf. Sci. 317, 614–621. (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Y.L. Yang, S.R. Paital, N.B. Dahotre, Mater. Technol. 25, 137–142 (2010)CrossRefGoogle Scholar
  26. 26.
    C.L. Zhao, P. Hou, J.H. Ni, P. Han, Y.M. Chai, X.N. Zhang, ACS Appl. Mater. Interfaces 8, 5093–5103. (2016)CrossRefGoogle Scholar
  27. 27.
    H.S. Myung, H.M. Lee, L.R. Shaginyan, Surf. Coat. Technol. 163, 591–596. (2003)CrossRefGoogle Scholar
  28. 28.
    D. Arcos, J. Rodriguez-Carvajal, M. Vallet-Regi, Chem. Mater. 16, 2300–2308 (2004)CrossRefGoogle Scholar
  29. 29.
    D. Wei, Y. Zhou, D. Jia, Y. Wang, Surf. Coat. Technol. 201, 8715–8722. (2007)CrossRefGoogle Scholar
  30. 30.
    J. Coreño, O. Coreño, J. Biomed. Mater. Res. 75A, 478–484. (2005)CrossRefGoogle Scholar
  31. 31.
    J. Bejarano, P. Caviedes, H. Palza, Biomed. Mater. 10, 025001–025006. (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Y.F. Goh, A.Z. Alshemary, M. Akram, M.R.A. Kadir, R. Hussain, Mater. Chem. Phys. 137, 1031–1038. (2013)CrossRefGoogle Scholar
  33. 33.
    C.T. Wu, Y.H. Zhou, M.C. Xu, P.P. Han, L. Chen, J. Chang, Y. Xiao, Biomaterials 34, 422–433. (2013)CrossRefGoogle Scholar
  34. 34.
    L. Bi, S. Jung, D. Day, K. Neidig, V. Dusevich, D. Eick, L. Bonewald, J. Biomed. Mater. Res. A. 100, 3267–3275. (2012)CrossRefGoogle Scholar
  35. 35.
    L. Ren, K. Yang, L. Guo, H.W. Chai, Mater. Sci. Eng. C 32, 1204–1209 (2012)CrossRefGoogle Scholar
  36. 36.
    X. Cai, B. Zhang, Y.Y. Liang, J.L. Zhang, Y.H. Yan, X.Y. Chen, Z.M. Wu, H.X. Liu, S.P. Wen, S.Z. Yan, T. Wu, Colloid Surf. B 132, 281–289 (2015)CrossRefGoogle Scholar
  37. 37.
    S.J. Jin, L. Ren, K. Yang, J. Mater. Sci. Technol. 32, 835–839. (2016)CrossRefGoogle Scholar
  38. 38.
    I. Volyanski, S. Volchkov, I. Shishkovsky, Opt. Quant. Electron. 49, 140–150 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Baoping Hou
    • 1
  • Zhao Yang
    • 1
  • Yuling Yang
    • 1
  • Erlin Zhang
    • 2
  • Gaowu Qin
    • 2
  1. 1.School of Science, School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Key Laboratory for Anisotropy and Texture of Materials (MoE), School of Materials Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations