Skip to main content
Log in

Near-field marking of gold nanostars by ultrashort pulsed laser irradiation: experiment and simulations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Quantitative measurements of the electric near-field distribution of star-shaped gold nanoparticles have been performed by femtosecond laser ablation. Measurements were carried out on and off the plasmon resonance. A detailed comparison with numerical simulations of the electric fields is presented. Semi-quantitative agreement is found, with slight systematic differences between experimentally observed and simulated near-field patterns close to strong electric-field gradients. The deviations are attributed to carrier transport preceding ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Pelton, G.W. Bryant, Introduction to metal-nanoparticle plasmonics (Wiley, Hoboken, 2013)

    Google Scholar 

  2. L. Novotny, B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  3. U. Kreibig, M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995)

    Google Scholar 

  4. L. Novotny, R.X. Bian, X.S. Xie, Phys. Rev. Lett. 79(4), 645 (1997)

    ADS  Google Scholar 

  5. S. Nie, S.R. Emory, Science 275(5303), 1102 (1997)

    Google Scholar 

  6. J. Mock, M. Barbic, D. Smith, D. Schultz, S. Schultz, J. Chem. Phys. 116(15), 6755 (2002)

    ADS  Google Scholar 

  7. J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3(4), 485 (2003)

    ADS  Google Scholar 

  8. X. Luo, A. Morrin, A.J. Killard, M.R. Smyth, Electroanalysis18(4), 319 (2006)

    Google Scholar 

  9. L. Rodríguez-Lorenzo, R.A. Álvarez-Puebla, I. Pastoriza-Santos, S. Mazzucco, O. Stéphan, M. Kociak, L.M. Liz-Marzán, F.J. García de Abajo, J. Am. Chem. Soc. 131(13), 4616 (2009)

    Google Scholar 

  10. H.A. Atwater, A. Polman, Nat. Mater. 9(3), 205 (2010)

    ADS  Google Scholar 

  11. M. Kauranen, A.V. Zayats, Nat. Photonics 6(11), 737 (2012)

    ADS  Google Scholar 

  12. F.J.G. De Abajo, Nature 483(7390), 417 (2012)

    ADS  Google Scholar 

  13. J. Olson, S. Dominguez-Medina, A. Hoggard, L.Y. Wang, W.S. Chang, S. Link, Chem. Soc. Rev. 44(1), 40 (2015)

    Google Scholar 

  14. C. Forestiere, A.J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S.Y. Lee, B.M. Reinhard, L. Dal Negro, Nano Lett. 12(4), 2037 (2012)

    ADS  Google Scholar 

  15. H. Lakhotiya, A. Nazir, S.P. Madsen, J. Christiansen, E. Eriksen, J. Vester-Petersen, S.R. Johannsen, B.R. Jeppesen, P. Balling, A.N. Larsen, B. Julsgaard, Appl. Phys. Lett. 109(26), 263102 (2016)

    ADS  Google Scholar 

  16. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (Wiley, Hoboken, 2008)

    Google Scholar 

  17. J. Krenn, A. Dereux, J. Weeber, E. Bourillot, Y. Lacroute, J. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. Aussenegg et al., Phys. Rev. Lett. 82(12), 2590 (1999)

    ADS  Google Scholar 

  18. A. Merlen, F. Lagugné-Labarthet, Appl. Spectrosc. 68(12), 1307 (2014)

    ADS  Google Scholar 

  19. P. Das, A. Kedia, P.S. Kumar, N. Large, T.K. Chini, Nanotechnology24(40), 405704 (2013)

    Google Scholar 

  20. F.P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, J.R. Krenn, Nano Lett. 12(11), 5780 (2012)

    ADS  Google Scholar 

  21. T. Coenen, D.T. Schoen, B.J. Brenny, A. Polman, M.L. Brongersma, Phys. Rev. B 93(19), 195429 (2016)

    ADS  Google Scholar 

  22. P. Leiderer, C. Bartels, J. Koenig-Birk, M. Mosbacher, J. Boneberg, Appl. Phys. Lett. 85(22), 5370 (2004)

    ADS  Google Scholar 

  23. J. Fiutowski, C. Maibohm, O. Kostiučenko, J. Kjelstrup-Hansen, H.G. Rubahn, J. Nanophotonics 6(1), 063515 (2012)

    Google Scholar 

  24. S. Dickreuter, J. Gleixner, A. Kolloch, J. Boneberg, E. Scheer, P. Leiderer, Beilstein J. Nanotechnol. 4, 588 (2013)

    Google Scholar 

  25. P. Kühler, F.J.G. de Abajo, P. Leiprecht, A. Kolloch, J. Solis, P. Leiderer, J. Siegel, Opt. Express 20(20), 22063 (2012)

    ADS  Google Scholar 

  26. C. David, P. Kühler, F.J.G. de Abajo, J. Siegel, Opt. Express22(7), 8226 (2014)

    ADS  Google Scholar 

  27. C. Deeb, R. Bachelot, J. Plain, A.L. Baudrion, S. Jradi, A. Bouhelier, O. Soppera, P.K. Jain, L. Huang, C. Ecoffet et al., ACS Nano4(8), 4579 (2010)

    Google Scholar 

  28. T. Geldhauser, A. Kolloch, N. Murazawa, K. Ueno, J. Boneberg, P. Leiderer, E. Scheer, H. Misawa, Langmuir 28(24), 9041 (2012)

    Google Scholar 

  29. S. Mazzucco, O. Stéphan, C. Colliex, I. Pastoriza-Santos, L.M. Liz-Marzan, J.G. de Abajo, M. Kociak, Eur. Phys. J. Appl. Phys. 54(3), 33512 (2011)

    ADS  Google Scholar 

  30. F. Hao, C.L. Nehl, J.H. Hafner, P. Nordlander, Nano Lett. 7(3), 729 (2007)

    ADS  Google Scholar 

  31. J.M. Jin, Theory and computation of electromagnetic fields (Wiley, Hoboken, 2010)

    Google Scholar 

  32. E.H. Eriksen, B. Julsgaard, S.P. Madsen, H. Lakhotiya, A. Nazir, P. Balling, Opt. Express 25(16), 19354 (2017)

    ADS  Google Scholar 

  33. S.P. Madsen, S.R. Johannsen, B.R. Jeppesen, J.V. Nygaard, P.B. Jensen, J. Chevallier, B. Julsgaard, P. Balling, A.N. Larsen, Energy Proced.77, 478 (2015)

    Google Scholar 

  34. E. Centurioni, Appl. Opt. 44(35), 7532 (2005)

    ADS  Google Scholar 

  35. P.B. Johnson, R.W. Christy, Phys. Rev. B 6(12), 4370 (1972)

    ADS  Google Scholar 

  36. I.H. Malitson, J. Opt. Soc. Am. 55(10), 1205 (1965)

    ADS  Google Scholar 

  37. COMSOL AB. COMSOL Multiphycis® v. 5.3. www.comsol.com

  38. J. Liu, Opt. Lett. 7(5), 196 (1982)

    ADS  Google Scholar 

  39. E. Kraaikamp. Autostakkert v. 2.6.8. www.autostakkert.com

  40. A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, J. Boneberg, Science 309(5743), 2043 (2005)

    ADS  Google Scholar 

  41. C. Spindt, I. Brodie, L. Humphrey, E. Westerberg, J. Appl. Phys.47(12), 5248 (1976)

    ADS  Google Scholar 

  42. J. Henson, J. DiMaria, R. Paiella, J. Appl. Phys. 106(9), 093111 (2009)

    ADS  Google Scholar 

  43. A. Robitaille, É. Boulais, M. Meunier, Opt. Express 21(8), 9703 (2013)

    ADS  Google Scholar 

  44. A. Rämer, O. Osmani, B. Rethfeld, J. Appl. Phys. 116(5), 053508 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

Harish Lakhotiya is gratefully acknowledged for producing the \({\hbox {TiO}_{2}}\):\({\hbox {Er}^{3+}}\) films. This work was funded by Innovation Fund Denmark through the SunTune project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren H. Møller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Møller, S.H., Vester-Petersen, J., Nazir, A. et al. Near-field marking of gold nanostars by ultrashort pulsed laser irradiation: experiment and simulations. Appl. Phys. A 124, 210 (2018). https://doi.org/10.1007/s00339-018-1615-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1615-4

Navigation