Applied Physics A

, 124:235 | Cite as

Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

  • Rajeev Kumar
  • Angad S. Kushwaha
  • Monika Srivastava
  • H. Mishra
  • S. K. Srivastava
Article
  • 108 Downloads

Abstract

In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

Notes

Acknowledgements

Authors are thankful to University Grant Commission (UGC) New Delhi and CSIR New Delhi, India, for providing financial support.

References

  1. 1.
    J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors. Rev. Sens. Actuators B. 54, 3–15 (1999)CrossRefGoogle Scholar
  2. 2.
    C.-W. Chen, C.-H. Lin, H.-P. Chiang, Y.-C. Liu, P.T. Leung, W.S. Tse, Temperature dependence of the sensitivity of a long-range surface plasmon optical sensor. Appl. Phys. A. 89, 377–380 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, R. Rao, Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis. Appl. Phys. A. 89, 407–411 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    P. Paul Beland, Berini, Viability assessment of bacteria using long-range surface plasmon waveguide biosensors. Appl. Phys. A. 123, 31 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    M. Farre, L. Kantiani, D. Barcelo, Advances in immunochemical technologies for analysis of organic pollutants in the environment. Trac Trends Anal. Chem. 26, 1100–1112 (2007)CrossRefGoogle Scholar
  6. 6.
    W.P. Chen, J.M. Chen, Use of surface plasma waves for determination of the thickness and optical constants of thin metallic films. J. Opt. Soc. Am. 71, 189–191 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 108, 462–493 (2008)CrossRefGoogle Scholar
  8. 8.
    X. Yu, D. Wang, Z. Yan, Simulation and analysis of surface plasmon resonance biosensor based on phase detection. Sen. Actuators B Phys. 91, 285–290 (2003)CrossRefGoogle Scholar
  9. 9.
    N.-F. Chiu, Y.-C. Tu, T.-Y. Huang, Enhanced sensitivity of anti-symmetrically structured surface plasmon resonance sensors with zinc oxide intermediate layers. Sensors. 14, 170–187 (2014)CrossRefGoogle Scholar
  10. 10.
    G.B. McGaughey, M. Gagne, A.K. Rappe, π-Stacking interactions alive and well in proteins. J. Biol. Chem. 273, 15458–15463 (1998)CrossRefGoogle Scholar
  11. 11.
    J. Tang, H. Wu, J.R. Cort, G.W. Buchko, Y. Zhang, Y. Shao, I.A. Aksay, J. Liu, Y. Lin, Constraint of DNA on functionalized graphene improves its biostability and specificity. Small. 6, 1205–1209 (2010)CrossRefGoogle Scholar
  12. 12.
    L. Wu, H.S. Chu, W.S. Koh, E.P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express. 18, 14395–14400 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    J.C. Charlier, P.C. Eklund, J. Zhu, A.C. Ferrari, Electron and phonon properties of graphene: their relationship with carbon nanotubes, in Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications, ed. by A. Jorio, G. Dresselhaus, M.S. Dresselhaus (Springer, Berlin, 2008)Google Scholar
  14. 14.
    Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Yu, Y.P. Feng, Z.X. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    D.W. Horsell, P.J. Hale, A.K. Savchenko, Mechanical manipulation and measurement of graphene by atomic force microscopy. Microsc. Anal. 25, 9–11 (2011)Google Scholar
  16. 16.
    Electrons Can Travel Over 100 Times Faster In Graphene Than In Silicon, Physicists Show (ScienceDaily, 2008), http://www.sciencedaily.com/releases/2008/03/080324094514.htm. Accessed 25 Mar 2008
  17. 17.
    B. Song, D. Li, W.P. Qi, M. Elstner, C.H. Fan, H.P. Fang, Graphene on Au (111): a highly conductive material with excellent adsorption properties for high-resolution bio/nanodetection and identification. Chem. Phy. Chem. 1, 585–589 (2010)Google Scholar
  18. 18.
    S. Patskovsky, S. Bah, M. Meunier, A.V. Kabashin, Characterization of high refractive index semiconductor films by surface plasmon resonance. Appl. Opt. 45, 6640–6645 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    S. Franzen, Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Opt. Lett. 34, 2867–2869 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    W.M. Kima, S.H. Kim, K.-S. Lee, T.S. Lee, I.H. Kim, Titanium nitride thin film as an adhesion layer for surface Plasmon resonance sensor chips. Appl. Sur. Sci. 261, 749–752 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    P.H. Holloway, Gold/chromium metallization for electronic devices. Gold Bull. 12, 99–106 (1979)CrossRefGoogle Scholar
  22. 22.
    H. Neff, W. Zong, A.M.N. Lima, M. Borre, G. Holzhuter, Optical properties and instrumental performance of thin gold films near the surface plasmon resonance. Thin Solid Films. 496, 688–697 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    U. Ozgur, C. Liu, A. Alivov, M.A. Teke, S. Reshchikoh, V. Dogan, S.J. Avrutin, H. Cho, Morkoc, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 41–301 (2005)CrossRefGoogle Scholar
  24. 24.
    A.B. Djurisic, Y.H. Leung, Optical properties of ZnO nanostructures. Small. 2, 944–961 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Wang, X. Sun, A. Wei, Y. Lei, X. Cai, C. Li, Z. Dong, Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88, 233106–233109 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    S.A. Kumar, S.-M. Chen, Nanostructured zinc oxide particles in chemically modified electrodes for biosensor applications. Anal. Lett. 41, 141–158 (2008)CrossRefGoogle Scholar
  27. 27.
    H. Liao, W. Wen, G.K. Wong, G. Yang, Optical nonlinearity of nanocrystalline Au/ZnO composite films. Opt. Lett. 28, 1790–1792 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    L. Wang, J. Wang, S. Zhang, Y. Sun, X. Zhu, Y. Cao, X. Wang, H. Zhang, D. Song, Surface plasmon resonance biosensor based on water-soluble ZnO–Au nanocomposites. Anal. Chim. Acta. 653, 109–115 (2009)CrossRefGoogle Scholar
  29. 29.
    K. Ozga, T. Kawaharamura, A. Umar, M. Ali, K. Oyama, A. Nouneh, S. Slezak, M. Fujita, A.H. Piasecki, I.V. Reshak, Kityk, Second-order optical effects in Au nanoparticle-deposited ZnO nanocrystallite films. Nanotechnology. 19, 185–709 (2008)CrossRefGoogle Scholar
  30. 30.
    B.H. Ong, X. Yuan, S.C. Tjin, J. Zhang, H. Ng, Min, Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sen Actuators B Chem. 114, 1028–1034 (2006)CrossRefGoogle Scholar
  31. 31.
    L. Xia, S. Yin, H. Gao, Q. Deng, C. Du, Sensitivity enhancement for surface plasmon resonance imaging biosensor by utilizing gold-silver bimetallic film configuration. Plasmonics. 6, 245–250 (2011)CrossRefGoogle Scholar
  32. 32.
    S.W. Kowalczyk, M.W. Tuijtel, S.P. Donkers, C. Dekker, Unraveling single-stranded DNA in a solid-state nanopore. Nano Lett. 10, 1414–1420 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    R. Triranjita Srivastava, R. Jha, Das, High-performance bimetallic SPR sensor based on periodic-multilayer-waveguides. IEEE Photon. Tech. Lett. 23, 1448–1450 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    S.H. Choi, K.M. Byun, Investigation on an application of silver substrates for sensitive surface plasmon resonance imaging detection. Opt. Soc. Am. A. 27, 2229–2236 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    A.I. Stognij, N.N. Novitskii, S.D. Tushina, S.V. Kolinnikov, Preparation of ultrathin gold film by oxygen-ion sputtering and their optical properties. Tech. Phys. 48, 745–748 (2003)CrossRefGoogle Scholar
  36. 36.
    M. Bruna, S. Borini, Optical constants of graphene layers in visible range. Appl. Phys. Lett. 94, 031901–031903 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene. Science. 320, 1308–1314 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    B.D. Gupta, A.K. Sharma, Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor. Sens. Actuators B. 107, 40–46 (2005)CrossRefGoogle Scholar
  39. 39.
    Z.-Y. Li, L.-L. Lin, Photonic band structure solved by a plane-wave-based transfer-matrix method. Phys. Rev. E. 67, 046607 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    P. Yeh, Optical waves in layered media (Wiley, Singapore, 1991)Google Scholar
  41. 41.
    Y.-H. Ye, G. Bader, V.-V. Truong, Low-loss one-dimensional metallodielectric photonic crystals fabricated by metallic insertions in a multilayer dielectric structure. Appl. Phys. Lett. 77, 235–237 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    R. Verma, B.D. Gupta, R. Jha, Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sens. Actuators B. 160, 623–631 (2011)CrossRefGoogle Scholar
  43. 43.
    P.K. Maharana, R. Jha, Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sens. Actuators B Chem. 169, 161–166 (2012)CrossRefGoogle Scholar
  44. 44.
    P.K. Maharana, T. Srivastava, R. Jha, Ultrasensitive plasmonic imaging sensor based on graphene and silicon. IEEE Photonics Tech. Lett. 25, 122–125 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    P.K. Maharana, R. Jha, S. Palei, Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sens. Actuators B Chem. 190, 494–501 (2014)CrossRefGoogle Scholar
  46. 46.
    P.K. Maharana, R. Jha, P. Padhy, On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared. Sens. Actuators B. 207, 117–122 (2015)CrossRefGoogle Scholar
  47. 47.
    P.K. Maharana, P. Padhy, R. Jha, On the field enhancement and performance of an ultra-stable SPR biosensor based on graphene. IEEE Photonics Tech. Lett. 25, 2156–2159 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    P.K. Maharana, T. Srivastava, R. Jha, On the performance of highly sensitive and accurate graphene-on-aluminium and silicon-based SPR biosensor for visible and near infrared. Plasmonics. 9, 1113–1120 (2014)CrossRefGoogle Scholar
  49. 49.
    P.K. Maharana, T. Srivastava, R. Jha, Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements. J. Phys. D Appl. Phys. 47, 385102 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    J.K. Nayak, P.K. Maharana, R. Jha, Dielectric over-layer assisted graphene, its oxide and MoS2-based fibre optic sensor with high field enhancement. J. Phys. D Appl. Phys. 50, 405112 (2017)CrossRefGoogle Scholar
  51. 51.
    J.K. Nayak, R. Jha, Numerical simulation on the performance analysis of a graphene-coated optical fibre plasmonic sensor at anti-crossing. Appl. Opt. 56, 3510–3517 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rajeev Kumar
    • 1
  • Angad S. Kushwaha
    • 1
  • Monika Srivastava
    • 2
  • H. Mishra
    • 3
  • S. K. Srivastava
    • 1
  1. 1.Department of Physics, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.School of Material ScienceIIT (BHU) VaranasiVaranasiIndia
  3. 3.Department of Physics (MMV)Banaras Hindu UniversityVaranasiIndia

Personalised recommendations