Skip to main content
Log in

Temperature-dependent field-effect carrier mobility in organic thin-film transistors with a gate SiO2 dielectric modified by H2O2 treatment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of the modification of a gate SiO2 dielectric using an H2O2 solution on the temperature-dependent behavior of carrier transport for pentacene-based organic thin-film transistors (OTFTs) is studied. H2O2 treatment leads to the formation of Si(–OH)x (i.e., the formation of a hydroxylated layer) on the SiO2 surface that serves to reduce the SiO2 capacitance and weaken the pentacene–SiO2 interaction, thus increasing the field-effect carrier mobility (µ) in OTFTs. The temperature-dependent behavior of carrier transport is dominated by the multiple trapping model. Note that H2O2 treatment leads to a reduction in the activation energy. The increased value of µ is also attributed to the weakening of the interactions of the charge carriers with the SiO2 dielectric that serves to reduce the activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.T. Pantelides, The physics of SiO2 and its interfaces, in Proceedings of the international topical conference on the physics of SiO2 and its interfaces, IBM Thomas J. Waston Research Center, Yorktown Heights, New York, 22–24 March 1978, (Pergamon Press Inc., New York, 1978)

  2. S. Basu, Crystalline silicon—properties and uses. (InTech, Rijeka, 2011)

    Book  Google Scholar 

  3. M. Daraktchiev, A. von Mühlenen, F. Nüesch, M. Schaer, M. Brinkmann, M.N. Bussac, L. Zuppiroli, New J. Phys. 7, 133 (2005)

    Article  ADS  Google Scholar 

  4. F. Salleo, R.A. Endicott, Street, Appl. Phys. Lett. 86, 263505 (2005)

    Article  ADS  Google Scholar 

  5. C. Reese, M. Roberts, M. Ling, Z. Bao, Mater. Today. 7, 20 (2004)

    Article  Google Scholar 

  6. T.W. Kelley, P.F. Baude, C. Gerlach, D.E. Ender, D. Muyres, M.A. Haase, D.E. Vogel, S.D. Theiss, Chem. Mater. 16, 4413 (2004)

    Article  Google Scholar 

  7. Y.J. Lin, C.L. Tsai, B.C. Huang, Appl. Phys. Lett. 97, 203509 (2010)

    Article  ADS  Google Scholar 

  8. Y.J. Lin, Synth. Met. 160, 2628 (2010)

    Article  Google Scholar 

  9. G. Gu, M.G. Kane, J.E. Doty, A.H. Firester, Appl. Phys. Lett. 87, 243512 (2005)

    Article  ADS  Google Scholar 

  10. D.K. Hwang, M.S. Oh, J.M. Hwang, J.H. Kim, S. Im, Appl. Phys. Lett. 92, 013304 (2008)

    Article  ADS  Google Scholar 

  11. N. Wrachien, D. Bari, J. Kovac, J. Jakabovic, D. Donoval, G. Meneghesso, A. Cester, Microelectron. Reliab. 52, 2490 (2012)

    Article  Google Scholar 

  12. S. Mansouri, R. Bourguiga, F. Yakuphanoglu, Microelectron. Reliab. 52, 2585 (2012)

    Article  Google Scholar 

  13. J.B. Koo, C.H. Ku, S.C. Lim, S.H. Kim, J.H. Lee, Appl. Phys. Lett. 90, 133503 (2007)

    Article  ADS  Google Scholar 

  14. S.C. Lim, S.H. Kim, J.B. Koo, J.H. Lee, C.H. Ku, Y.S. Yang, T. Zyung, Appl. Phys. Lett. 90, 173512 (2007)

    Article  ADS  Google Scholar 

  15. C.J. Dai, H.Y. Tsao, Y.J. Lin, D.S. Liu, Thin Solid Films. 552, 159 (2014)

    Article  ADS  Google Scholar 

  16. Y.J. Lin, B.C. Huang, Mater. Chem. Phys. 142, 428 (2013)

    Article  Google Scholar 

  17. Y.J. Lin, B.C. Huang, Microelectron. Eng. 103, 76 (2013)

    Article  Google Scholar 

  18. Y.J. Lin, H.Y. Tsao, D.S. Liu, J. Mater. Sci. Mater. Electron. 26, 2579 (2015)

    Article  Google Scholar 

  19. W. Wang, X. Shi, X. Li, Y. Zhang, IEEE Electron Dev. Lett. 37, 1332 (2016)

    Article  ADS  Google Scholar 

  20. H.C. Tiao, Y.J. Lee, Y.S. Liu, S.H. Lee, C.H. Li, M.Y. Kuo, Org. Electron. 13, 1004 (2012)

    Article  Google Scholar 

  21. M. Shtein, J. Mapel, J.B. Benziger, S.R. Forrest, Appl. Phys. Lett. 81, 268 (2002)

    Article  ADS  Google Scholar 

  22. D. Knipp, R.A. Street, A. Völkel, J. Ho, J. Appl. Phys. 93, 347 (2003)

    Article  ADS  Google Scholar 

  23. F.D. Fleischli, S. Suárez, M. Schaer, L. Zuppiroli, Langmuir. 26, 15044 (2010)

    Article  Google Scholar 

  24. S.J. Konezny, M.N. Bussac, L. Zuppiroli, Phys. Rev. B. 81, 045313 (2010)

    Article  ADS  Google Scholar 

  25. H. Houili, J.D. Picon, L. Zuppiroli, M.N. Bussac, J. Appl. Phys. 100, 023702 (2006)

    Article  ADS  Google Scholar 

  26. Y.J. Lin, T.H. Su, J. Mater. Sci. Mater. Electron. 28, 10106 (2017)

    Article  Google Scholar 

  27. A.U. Alam, M.M.R. Howlader, M.J. Deen, ECS J. Solid State Sci. Technol. 2, 515 (2013)

    Article  Google Scholar 

  28. D. Guo, T. Miyadera, S. Ikeda, T. Shimada, K. Saiki, J. Appl. Phys. 102, 023706 (2007)

    Article  ADS  Google Scholar 

  29. T. Minari, T. Nemoto, S. Isoda, J. Appl. Phys. 99, 034506 (2006)

    Article  ADS  Google Scholar 

  30. R.A. Street, D. Knipp, A.R. Völkel, Appl. Phys. Lett. 80, 1658 (2002)

    Article  ADS  Google Scholar 

  31. R. Matsubara, N. Ohashi, M. Sakai, K. Kudo, M. Nakamura, Appl. Phys. Lett. 92, 242108 (2008)

    Article  ADS  Google Scholar 

  32. S.Y. Kwak, C.G. Choi, B.S. Bae, Electrochem. Solid State Lett. 12, G37 (2009)

    Article  Google Scholar 

  33. S. Lee, B. Koo, J. Shin, E. Lee, H. Park, H. Kim, Appl. Phys. Lett. 88, 162109 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract No. 106-2112-M-018-001-MY3) in the form of grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Jon Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YJ., Hung, CC. Temperature-dependent field-effect carrier mobility in organic thin-film transistors with a gate SiO2 dielectric modified by H2O2 treatment. Appl. Phys. A 124, 173 (2018). https://doi.org/10.1007/s00339-018-1597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1597-2

Navigation