Formation of periodic surface structures on dielectrics after irradiation with laser beams of spatially variant polarisation: a comparative study

Abstract

A comparative study is performed to explore the periodic structure formation upon intense femtosecond-pulsed irradiation of dielectrics with radially and azimuthally polarised beams. Laser conditions have been selected appropriately to produce excited carriers with densities below the optical breakdown threshold in order to highlight the role of phase transitions in surface modification mechanisms. The frequency of the laser-induced structures is calculated based on a theoretical model that comprises estimation of electron density excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. The influence of the laser wavelength in the periodicity of the structures is also unveiled. The decreased energy absorption for azimuthally polarised beams yields periodic structures with smaller frequencies which are more pronounced as the number of laser pulses applied to the irradiation spot increases. Similar results are obtained for laser pulses of larger photon energy and higher fluences. All induced periodic structures are oriented parallel to the laser beam polarisation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    W.J. Cai, A.R. Libertun, R. Piestun, Opt. Express 14, 3785 (2006)

    ADS  Google Scholar 

  2. 2.

    E. Bricchi, B.G. Klappauf, P.G. Kazansky, Opt. Lett. 29, 119 (2004)

    ADS  Google Scholar 

  3. 3.

    L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Opt. Commun. 191, 333 (2001)

    ADS  Google Scholar 

  4. 4.

    H.G. de Chatellus, E. Freysz, Opt. Lett. 27, 1165 (2002)

    ADS  Google Scholar 

  5. 5.

    E.N. Glezer, M. Milosavljevic, L. Huang, R.J. Finlay, T.H. Her, J.P. Callan, E. Mazur, Opt. Lett. 21, 2023 (1996)

    ADS  Google Scholar 

  6. 6.

    H.B. Sun, Y. Xu, S. Juodkazis, K. Sun, M. Watanabe, S. Matsuo, H. Misawa, J. Nishii, Opt. Lett. 26, 325 (2001)

    ADS  Google Scholar 

  7. 7.

    R. Taylor, C. Hnatovsky, E. Simova, Laser Photonics Rev. 2, 26 (2008)

    ADS  Google Scholar 

  8. 8.

    E.L. Papadopoulou, M. Barberoglou, V. Zorba, A. Manousaki, A. Pagkozidis, E. Stratakis, C. Fotakis, J. Phys. Chem. C 113, 2891 (2009)

    Google Scholar 

  9. 9.

    M. Livitziis, S. Pissadakis, Opt. Lett. 33, 1449 (2008)

    ADS  Google Scholar 

  10. 10.

    L. Jiang, H.L. Tsai, Int. J. Heat Mass Transf. 48, 487 (2005)

    Google Scholar 

  11. 11.

    L. Jiang, H.L. Tsai, J. Appl. Phys. 100, 023116 (2006)

    ADS  Google Scholar 

  12. 12.

    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996)

    ADS  Google Scholar 

  13. 13.

    B. Chimier, O. Utéza, N. Sanner, M. Sentis, T. Itina, P. Lassonde, F. Légaré, F. Vidal, J.C. Kieffer, Phys. Rev. B 84, 094104 (2011)

    ADS  Google Scholar 

  14. 14.

    I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, Appl. Phys. A Mater. Sci. Process. 81, 1639 (2005)

    ADS  Google Scholar 

  15. 15.

    N.S. Shcheblanov, T.E. Itina, Appl. Phys. A Mater. Sci. Process. 110, 579 (2013)

    ADS  Google Scholar 

  16. 16.

    A.Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385 (2012)

    ADS  Google Scholar 

  17. 17.

    O.J. Allegre, W. Perrie, S.P. Edwardson, G. Dearden, K.G. Watkins, J. Opt. 14, 085601 (2012)

    ADS  Google Scholar 

  18. 18.

    L.E. Helseth, Opt. Commun. 191, 161 (2001)

    ADS  Google Scholar 

  19. 19.

    B. Hafizi, E. Esarey, P. Sprangle, Phys. Rev. E 55, 3539 (1997)

    ADS  Google Scholar 

  20. 20.

    V.G. Niziev, A.V. Nesterov, J. Phys. D Appl. Phys. 32, 1455 (1999)

    ADS  Google Scholar 

  21. 21.

    R. Torres, T. Kaempfe, M. Delaigue, O. Parriaux, C. Honninger, J. Lopez, R. Kling, E. Mottay, J. Laser Micro Nanoeng. 8, 188 (2013)

    Google Scholar 

  22. 22.

    T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, Phys. Rev. Lett. 78, 4713 (1997)

    ADS  Google Scholar 

  23. 23.

    Q.W. Zhan, Adv. Opt. Photonics 1, 1 (2009)

    ADS  Google Scholar 

  24. 24.

    K.S. Youngworth, T.G. Brown, Opt. Express 7, 77 (2000)

    ADS  Google Scholar 

  25. 25.

    S. Quabis, R. Dorn, M. Eberler, O. Glockl, G. Leuchs, Appl. Phys. B Lasers Opt. 72, 109 (2001)

    ADS  Google Scholar 

  26. 26.

    M. Beresna, M. Gecevicius, P.G. Kazansky, T. Gertus, Appl. Phys. Lett. 98, 201101 (2011)

    ADS  Google Scholar 

  27. 27.

    J.J.J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, S. Amoruso, Sci. Rep. Uk 5, 17929 (2015)

    ADS  Google Scholar 

  28. 28.

    E. Skoulas, A. Manousaki, C. Fotakis, E. Stratakis, Sci. Rep. Uk 7, 45114 (2017)

    ADS  Google Scholar 

  29. 29.

    C. Hnatovsky, V. Shvedov, W. Krolikowski, A. Rode, Phys. Rev. Lett. 106, 123901 (2011)

    ADS  Google Scholar 

  30. 30.

    G.D. Tsibidis, E. Skoulas, E. Stratakis, Opt. Lett. 40, 5172 (2015)

    ADS  Google Scholar 

  31. 31.

    B. Rethfeld, Phys. Rev. Lett. 92, 187401 (2004)

    ADS  Google Scholar 

  32. 32.

    G.D. Tsibidis, E. Skoulas, A. Papadopoulos, E. Stratakis, Phys. Rev. B 94, 081305(R) (2016)

    ADS  Google Scholar 

  33. 33.

    S.S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, P. Martin, Appl. Phys. A Mater. Sci. Process. 79, 1695 (2004)

    ADS  Google Scholar 

  34. 34.

    P. Balling, J. Schou, Rep. Prog. Phys. 76, 036502 (2013)

    ADS  Google Scholar 

  35. 35.

    W.L. Erikson, S. Singh, Phys. Rev. E 49, 5778 (1994)

    ADS  Google Scholar 

  36. 36.

    K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. B 61, 2643 (2000)

    ADS  Google Scholar 

  37. 37.

    S. Höhm, A. Rosenfeld, J. Krüger, J. Bonse, J. Appl. Phys. 112, 014901 (2012)

    ADS  Google Scholar 

  38. 38.

    S. Nolte, C. Momma, G. Kamlage, A. Ostendorf, C. Fallnich, F. von Alvensleben, H. Welling, Appl. Phys. A Mater. Sci. Process. 68, 563 (1999)

    ADS  Google Scholar 

  39. 39.

    S.I. Anisimov, B.l. Kapeliov, T.L. Perelman, Zhurnal Eksperimentalnoi Teor. Fiz 66, 776 (1974) [Sov. Phys. Tech. Phys. 11, 945 (1967)]

    ADS  Google Scholar 

  40. 40.

    H.M. Vandriel, Phys. Rev. B 35, 8166 (1987)

    ADS  Google Scholar 

  41. 41.

    J.K. Chen, D.Y. Tzou, J.E. Beraun, Int. J. Heat Mass Transf. 48, 501 (2005)

    Google Scholar 

  42. 42.

    E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949 (2002)

    ADS  Google Scholar 

  43. 43.

    J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)

    ADS  Google Scholar 

  44. 44.

    J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2005)

    ADS  Google Scholar 

  45. 45.

    G. Tsibidis, E. Stratakis, J. Appl. Phys. 121, 163106 (2017)

    ADS  Google Scholar 

  46. 46.

    H. Shibata, A. Suzuki, H. Ohta, Mater. Trans. 46, 1877 (2005)

    Google Scholar 

  47. 47.

    G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012)

    ADS  Google Scholar 

  48. 48.

    G.D. Tsibidis, C. Fotakis, E. Stratakis, Phys. Rev. B 92, 041405(R) (2015)

    ADS  Google Scholar 

  49. 49.

    H.J. Wang, W.Z. Dai, L.G. Hewavitharana, Int. J. Therm. Sci. 47, 7 (2008)

    Google Scholar 

  50. 50.

    R. Kelly, A. Miotello, Appl. Surf. Sci. 96–98, 205 (1996)

    ADS  Google Scholar 

  51. 51.

    Y. Morinishi, O.V. Vasilyev, T. Ogi, J. Comput. Phys. 197, 686 (2004)

    ADS  Google Scholar 

  52. 52.

    Y. Morinishi, T.S. Lund, O.V. Vasilyev, P. Moin, J. Comput. Phys. 143, 90 (1998)

    ADS  MathSciNet  Google Scholar 

  53. 53.

    M. Zerroukat, C.R. Chatwin, J. Comput. Phys. 112, 298 (1994)

    ADS  MathSciNet  Google Scholar 

  54. 54.

    J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)

    ADS  Google Scholar 

  55. 55.

    A. Rudenko, J.P. Colombier, S. Hohm, A. Rosenfeld, J. Kruger, J. Bonse, T.E. Itina, Sci. Rep. Uk 7, 12306 (2017)

    ADS  Google Scholar 

  56. 56.

    M. Barberoglou, G.D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, P.A. Loukakos, Appl. Phys. A Mater. Sci. Process. 113, 273 (2013)

    ADS  Google Scholar 

  57. 57.

    G.D. Tsibidis, E. Stratakis, P.A. Loukakos, C. Fotakis, Appl. Phys. A 114, 57 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the project LiNaBioFluid, funded by EU’s H2020 framework programme for research and innovation under Grant Agreement no. 665337 and from Nanoscience Foundries and Fine Analysis (NFFA)–Europe H2020-INFRAIA-2014-2015 (Grant agreement no. 654360). Funding is also acknowledged from the General Secretariat for Research and Technology (GSRT) and Hellenic Foundation for Research and Innovation (HFRI), no. 130229/I2.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to George D. Tsibidis or Emmanuel Stratakis.

Additional information

Tsibidis GD was in charge of the theoretical calculations. Papadopoulos A, Skoulas E and Stratakis E were in charge of the experimental work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2488 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Papadopoulos, A., Skoulas, E., Tsibidis, G.D. et al. Formation of periodic surface structures on dielectrics after irradiation with laser beams of spatially variant polarisation: a comparative study. Appl. Phys. A 124, 146 (2018). https://doi.org/10.1007/s00339-018-1573-x

Download citation