Comparative study of electrical transport and magnetic measurements of Y3Ba5Cu8O18±δ and YBa2Cu3O7−δ compounds: intragranular and intergranular superconducting properties
- 236 Downloads
- 4 Citations
Abstract
We compare the superconducting properties and flux pinning characteristics between YBa2Cu3O7−δ (called Y-123) and Y3Ba5Cu8O18±δ (called Y-358) compounds. Both samples were synthesized through the solid-state reaction. The samples were examined by X-ray diffraction, and scanning electron microscope coupled with energy dispersive spectrometry. The critical current densities of the prepared samples were investigated using current–voltage, magnetization measurements and ac-susceptibility. It is demonstrated that the Y-358 exhibits better superconducting and pinning properties than the Y-123 one. This may be ascribed to the layered structure and the occurrence of a greater number of insulating layers between the CuO2 planes that act as effective pinning sites and consequently conduce to a better fundamental pinning capacity in Y-358.
Notes
Acknowledgements
Imam Abdulrahman Bin Faisal University is acknowledged for their financial support through the Project Number 2017-529-IRMC.
References
- 1.C.W. Chu, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, Phys. Rev. Lett. 58, 405 (1987)ADSCrossRefGoogle Scholar
- 2.J.S. Wang, S.Y. Wang, Z.Y. Ren, X.G. Dong, G.B. Lin, J.S. Lian, C.F. Zhang, H.Y. Huang, C.Y. Deng, D.Q. Zhu, IEEE Trans. Appl. Supercond 9, 904 (1999)CrossRefGoogle Scholar
- 3.R. Hull, Supercond. Sci. Technol 13, R1 (2000)ADSCrossRefGoogle Scholar
- 4.H.J. Bornemann, M. Sander, IEEE Trans. Appl. Supercond 7, 398 (1997)CrossRefGoogle Scholar
- 5.A. Mourachkine, High-Temperature Superconductivity in Cuprates. https://doi.org/10.1007/0-306-48063-8 (Kluwer Academic Publisher, Dordrecht, 2002)CrossRefzbMATHGoogle Scholar
- 6.P. Marsh, R.M. Fleming, M.L. Mandich, A.M. De Santolo, J. Kwo, M. Hong, L.J. Martinez-Miranda, Nature 336, 660 (1988)CrossRefGoogle Scholar
- 7.P. Bordet, C. Chaillout, J. Chenavas, J.L. Hodeau, M. Marezio, J. Karpinski, E. Kaldis, Nature 334, 596 (1988)ADSCrossRefGoogle Scholar
- 8.A. Aliabadi, Y. Akhavan Farshchi, M. Akhavan, Phys. C 469, 2012 (2009)ADSCrossRefGoogle Scholar
- 9.P. Udomsamuthirun, T. Kruaehong, T. Nikamjon, S. Ratreng, J. Supercond. Nov. Magn 23, 1377 (2010)CrossRefGoogle Scholar
- 10.Y. Slimani, E. Hannachi, M.K. Ben Salem, A. Hamrita, A. Varilci, W. Dachraoui, M. Ben Salem, F. Ben Azzouz, Phys. B 450, 7 (2014)ADSCrossRefGoogle Scholar
- 11.Y. Slimani, E. Hannachi, M.K. Ben Salem, A. Hamrita, M. Ben Salem, F. Ben Azzouz, J. Supercond. Nov. Magn 28, 3001 (2015)CrossRefGoogle Scholar
- 12.Y. Slimani, E. Hannachi, M.K. Ben Salem, A. Hamrita, M. Ben Salem, F. Ben Azzouz, Mod. Phys. Lett. B 29, 1550227 (2015)ADSCrossRefGoogle Scholar
- 13.Y. Slimani, E. Hannachi, A. Hamrita, M.K. Ben Salem, M. Zouaoui, M. Ben Salem, F. Ben Azzouz, J. Supercond. Nov. Magn 28, 487 (2015)CrossRefGoogle Scholar
- 14.A. Hamrita, Y. Slimani, M.K. Ben Salem, E. Hannachi, L. Bessais, F. Ben Azzouz, M. Ben Salem, Ceram. Int. 40, 1461 (2014)CrossRefGoogle Scholar
- 15.C.P. Bean, Phys. Rev. Lett. 8, 250 (1962)ADSCrossRefGoogle Scholar
- 16.R. Awad, M.E. Barakat, A.I. Abou-Aly, N.H. Mohammed, N.A. Hassan, J. Supercond. Nov. Magn 30, 2315 (2017)CrossRefGoogle Scholar
- 17.E. Hannachi, Y. Slimani, M.K. Ben Salem, A. Hamrita, D.K. Mani, M. Ben Salem, F. Ben Azzouz, Mater. Chem. Phys 159, 185 (2015)CrossRefGoogle Scholar
- 18.M. Farbod, M.R. Batvandi, Phys. C 471, 112 (2011)ADSCrossRefGoogle Scholar
- 19.E.K. Nazarova, A.J. Zaleski, K.A. Nenkov, A.L. Zahariev, Phys. C 468, 955 (2008)ADSCrossRefGoogle Scholar
- 20.S. Kutuk, S. Bolat, C. Terzioglu, S.P. Altintas, J. Alloys Compd. 650, 159 (2015)CrossRefGoogle Scholar
- 21.D. Dew-Hughes, Philos. Mag. 30, 293 (1974)ADSCrossRefGoogle Scholar
- 22.G. Blatter, M. Feigel’man, V. Geshkenbein, A. Larkin, V. Vinokur, Rev. Mod. Phys 66, 1125 (1994)ADSCrossRefGoogle Scholar
- 23.D.R. Nelson, V.M. Vinokur, Phys. Rev. B 48, 13060 (1993)ADSCrossRefGoogle Scholar
- 24.M.M.E. Barakat, R. Awad, A.I. Abou-Aly, M. Roumi, N.A.S. Ibrahim, J. Supercond. Nov. Magn 28, 453 (2015)CrossRefGoogle Scholar
- 25.Y. Feng, A.K. Pradhan, Y. Zhao, S.K. Chen, Y. Wu, C.P. Zhang, G. Yan, J.K.F. Yau, L. Zhou, N. Koshizuka, Phys. C 385, 363 (2003)ADSCrossRefGoogle Scholar
- 26.M.K. Ben Salem, E. Hannachi, Y. Slimani, A. Hamrita, M. Zouaoui, L. Bessais, M. Ben Salem, F. Ben Azzouz, Ceram. Int. 40, 4953 (2014)CrossRefGoogle Scholar
- 27.M.K. Ben Salem, A. Hamrita, E. Hannachi, Y. Slimani, M. Ben Salem, F. Ben Azzouz, Phys. C 498, 38 (2014)ADSCrossRefGoogle Scholar
- 28.B. Martinez, X. Obradors, A. Gou, V. Gomis, S. Pinol, J. Fontcuberta, H. Van Tol, Phys. Rev. B 53, 2797 (1996)ADSCrossRefGoogle Scholar
- 29.J. Plain, T. Puig, F. Sandiumenge, X. Obradors, J. Rabier, Phys. Rev. B 65, 104526 (2002)ADSCrossRefGoogle Scholar
- 30.D. Behera, N.C. Mishra, K. Patnaik, J. Supercond 10, 27 (1997)ADSCrossRefGoogle Scholar
- 31.P.G. De Gennes, Rev. Mod. Phys 36, 225 (1964)ADSCrossRefGoogle Scholar
- 32.H. Salamati, P. Kameli, Solid State Commun. 125, 407 (2003)ADSCrossRefGoogle Scholar
- 33.V.B. Geshkenbein, V.M. Vinokur, R. Fehrenbacher, Phys. Rev. B 43, 3748 (1991)ADSCrossRefGoogle Scholar
- 34.P.W. Anderson, Y.B. Kim, Rev. Mod. Phys 36, 39 (1964)ADSCrossRefGoogle Scholar