Advertisement

Applied Physics A

, 124:270 | Cite as

Study on fibre laser machining quality of plain woven CFRP laminates

  • Maojun Li
  • Shuo Li
  • Xujing Yang
  • Yi Zhang
  • Zhichao Liang
Article

Abstract

Laser cutting is suitable for large-scale and high-efficiency production with relatively high cutting speed, while machining of CFRP composite using lasers is challenging with severe thermal damage due to different material properties and sensitivity to heat. In this paper, surface morphology of cutting plain woven carbon fibre-reinforced plastics (CFRP) by fibre laser and the influence of cutting parameters on machined quality were investigated. A full factorial experimental design was employed involving three variable factors, which included laser pulse frequency at three levels together with laser power and cutting speed at two levels. Heat-affected zone (HAZ), kerf depth and kerf angle were quantified to understand the interactions with cutting parameters. Observations of machined surface were analysed relating to various damages using optical microscope and scanning electron microscopy (SEM), which included HAZ, matrix recession, fibre protruding, striations, fibre-end swelling, collapses, cavities and delamination. Based on ANOVA analysis, it was found that both cutting speed and laser power were significant factors for HAZ and kerf depth, while laser power was the only significant factor for kerf angle. Besides, HAZ and the kerf depth showed similar sensitivity to the pulse energy and energy per unit length, which was opposite for kerf angle. This paper presented the feasibility and experimental results of cutting CFRP laminates using fibre laser, which is possibly the efficient and high-quality process to promote the development of CFRPs.

Notes

Acknowledgements

The authors would like to appreciate the financial support sponsored by “the Fundamental Research Funds for the Central Universities (531107050870)”.

References

  1. 1.
    C. Soutis, Prog. Aerosp. Sci 41, 143 (2005)CrossRefGoogle Scholar
  2. 2.
    K. Friedrich, A.A. Almajid, Appl. Compos. Mater 20, 107 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    R. Teti, CIRP Ann. Manuf. Technol. 51, 611 (2002)CrossRefGoogle Scholar
  4. 4.
    G. Caprino, A. Langella, in Machining technology for composite materials, ed. by H. Hocheng (Woodhead Publishing, Cambridge, 2012), p. 75CrossRefGoogle Scholar
  5. 5.
    J.Y. Sheikh-Ahmad, J.P. Davim, in Machining technology for composite materials, ed. by H. Hocheng (Woodhead Publishing, Cambridge, 2012), p. 116CrossRefGoogle Scholar
  6. 6.
    J. Montesano, H. Bougherara, Z. Fawaz, Compos. Struct 163, 257 (2017)CrossRefGoogle Scholar
  7. 7.
    D.K. Shanmugam, T. Nguyen, J. Wang, Compos. Part A 39, 923 (2008)CrossRefGoogle Scholar
  8. 8.
    J.Y. Sheikh-Ahmad, Machining of polymer composites (Springer, New York, 2009), p. 260CrossRefGoogle Scholar
  9. 9.
    G. Chryssolouris, K. Salonitis, in Machining technology for composite materials, ed. by H. Hocheng (Woodhead Publishing, Cambridge, 2012), p. 266CrossRefGoogle Scholar
  10. 10.
    A.K. Dubey, V. Yadava, Int. J. Mach. Tool Manuf 48, 609 (2008)CrossRefGoogle Scholar
  11. 11.
    F.A. Al-Sulaiman, B.S. Yilbas, M. Ahsan, J. Mater. Process. Technol 173, 345 (2006)CrossRefGoogle Scholar
  12. 12.
    A. Hejjaji, D. Singh, S. Kubher, D. Kalyanasundaram, S. Gururaja, Compos. Part A 82, 42 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Freitag, M. Wiedenmann, J.P. Negel, A. Loescher, V. Onuseit, R. Weber, M.A. Ahmed, T. Graf, Appl. Phys. A 119, 1237 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    D. Herzog, M. Schmidt-Lehr, M. Canisius, M. Oberlander, J.P. Tasche, C. Emmelmann, J. Laser Appl 27, 7 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Bluemel, P. Jaeschke, V. Wippo, S. Bastick, U. Stute, D. Kracht, H. Haferkamp, in Proceedings of the 15th European Conference on Composite Materials (ECCM 15), Venice, Italy, 24–28 June (2012)Google Scholar
  16. 16.
    D. Herzog, M. Schmidt-Lehr, M. Oberlander, M. Canisius, M. Radek, C. Emmelmann, Mater. Des 92, 742 (2016)CrossRefGoogle Scholar
  17. 17.
    R. Negarestani, L. Li, H.K. Sezer, D. Whitehead, J. Methven, Int. J. Adv. Manuf. Technol 49, 553 (2010)CrossRefGoogle Scholar
  18. 18.
    A. Furst, D. Hipp, A. Klotzbach, J. Hauptmann, A. Wetzig, E. Beyer, Adv. Eng. Mater 18, 403 (2016)CrossRefGoogle Scholar
  19. 19.
    Z.L. Li, H.Y. Zheng, G.C. Lim, P.L. Chu, L. Li, Compos. Part A 41, 1403 (2010)CrossRefGoogle Scholar
  20. 20.
    Y. Lijun, H. Chaojian, Z. Ming, C. Weiqiang, W. Yang, Appl. Mech. Mater 633–634, 738 (2014)Google Scholar
  21. 21.
    A. Salama, L. Li, P. Mativenga, A. Sabli, Appl. Phys. A 122, 73 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    A. Salama, Y.Z. Yan, L. Li, P. Mativenga, D. Whitehead, A. Sabli, Mater. Des 107, 461 (2016)CrossRefGoogle Scholar
  23. 23.
    D. Herzog, P. Jaeschke, O. Meier, H. Haferkamp, Int. J. Mach. Tool Manuf 48, 1464 (2008)CrossRefGoogle Scholar
  24. 24.
    A. Salama, L. Li, P. Mativenga, D. Whitehead, Appl. Phys. A 122, 497 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    J. Mathew, G.L. Goswami, N. Ramakrishnan, N.K. Naik, J. Mater. Process. Technol 89–90, 198 (1999)CrossRefGoogle Scholar
  26. 26.
    C. Leone, S. Genna, V. Tagliaferri, Opt. Laser Eng 53, 43 (2014)CrossRefGoogle Scholar
  27. 27.
    C. Leone, I. Papa, F. Tagliaferri, V. Lopresto, Compos. Part A 55, 129 (2013)CrossRefGoogle Scholar
  28. 28.
    A.A. Cenna, P. Mathew, Int. J. Mach. Tool Manuf 42, 105 (2002)CrossRefGoogle Scholar
  29. 29.
    J. Stock, M.F. Zaeh, M. Conrad, Phys. Proced 39, 161 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Design and Manufacture for Vehicle BodyHunan UniversityChangshaChina
  2. 2.Hunan Provincial Key Laboratory of Intelligent Laser ManufacturingHunan UniversityChangshaChina

Personalised recommendations