Skip to main content
Log in

Physical property improvement of IZTO thin films using a hafnia buffer layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Hafnia (HfO2) has excellent mechanical and chemical stability, good transmittance, high dielectric constant, and radiation resistance property; thus, it can prevent impurities from permeating into the depositing films. So, we deposited hafnia films with various thicknesses in the range of 0–60 nm on polyethylene naphthalate (PEN) substrates before depositing indium–zinc–tin oxide (IZTO) thin films on them using RF magnetron sputtering, and their structural, morphological, optical, and electrical properties were evaluated. All IZTO thin films were successfully deposited without cracks or pinholes and had amorphous structures. As the thickness of the hafnia film increased to 30 nm, the overall properties improved; a surface roughness of 2.216 nm, transmittance of 82.59% at 550 nm, resistivity of 5.66 × 10−4 Ω cm, sheet resistance of 23.60 Ω/sq, and figure of merit of 6.26 × 10−3 Ω−1 were realized. These results indicate that the structure and materials studied in this research are suitable for application in flexible transparent electronic devices such as organic light emitting diodes, liquid crystal displays, touch panels, and solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.H. Lee, H.W. Jang, K.B. Kim, Y.H. Tak, J.L. Lee, J. Appl. Phys. 95, 586 (2004)

    Article  ADS  Google Scholar 

  2. J.H. Kim, K.A. Jeon, G.H. Kim, S.Y. Lee, Apple. Surf. Sci. 252, 4834 (2006)

    Article  ADS  Google Scholar 

  3. D. Ito, K. Masuko, B. Weintraub, L. Mckenzie, J. Hutchison, J. Nanopart Res. 14, 1274 (2012)

    Article  ADS  Google Scholar 

  4. V. Teixeira, H.N. Cui, L.J. Meng, E. Fortunato, R. Martins, Thin Solid Films 420–421, 70 (2002)

    Article  Google Scholar 

  5. N. Ito, Y. Sato, P.K. Song, A. Kaijio, K. Inoue, Y. Shigesato, Thin Solid Films 496, 99 (2006)

    Article  ADS  Google Scholar 

  6. J.C. Park, S.J. Kang, D.H. Chang, Y.S. Yoon, J. Korean Ceram. Soc. 52, 72 (2015)

    Article  Google Scholar 

  7. J.C. Park, S.J. Kang, Y.S. Yoon, J. Korean Ceram. Soc. 52, 290 (2015)

    Article  Google Scholar 

  8. D.Y. Lee, J.R. Lee, G.H. Lee, P.K. Song, Surf. Coat. Techol. 202, 5718 (2008)

    Article  Google Scholar 

  9. B. Woo, J. Hong, S. Kim, H. Kim, S. Park, J. Kim, J. Korean Phys. Soc. 48, 1579 (2006)

    Google Scholar 

  10. S.H. Kwon, Y.M. Kang, Y.R. Cho, S.H. Kim, P.K. Song, Surf. Coat. Technol. 205, S312 (2010)

    Article  Google Scholar 

  11. J.C. Park, S.J. Kang, Y.S. Yoon, J. Korean Ceram. Soc. 52, 224 (2015)

    Article  Google Scholar 

  12. D. Buchholz, Q. Ma, D. Alducin, A. Ponce, M. Yacaman, R. Khanal, J. Medvedeva, R. Chang, Chem. Mater. 26, 5401 (2014)

    Article  Google Scholar 

  13. H. Zhuang, J. Yan, C. Xu, D. Meng, Appl. Surf. Sci. 207, 241 (2014)

    Article  Google Scholar 

  14. X. Ding, J. Yan, T. Li, L. Zhang, Appl. Surf. Sci. 258, 3082 (2012)

    Article  ADS  Google Scholar 

  15. X. Ding, J. Yan, T. Li, L. Zhang, Vacuum 86, 443 (2011)

    Article  ADS  Google Scholar 

  16. B. Houng, S.L. Lin, S.W. Chen, A. Wang, Ceram. Int. 37, 3397 (2011)

    Article  Google Scholar 

  17. C. Lee, A. Park, Y. Cho, M. Park, W.I. Lee, H.W. Kim, Ceram. Int. 34, 1093 (2008)

    Article  Google Scholar 

  18. C. Leu, C. Lin, C. Chien, M. Yang, J. Mater. Res. 23, 2023 (2008)

    Article  ADS  Google Scholar 

  19. Y. Ko, S. Bang, S. Lee, S. Park, J. Park, H. Jeon, Phys. Status Solidi RRL 5, 403 (2011)

    Article  Google Scholar 

  20. J.C. Park, Y.S. Yoon, S.J. Kang, J. Korean Ceram. Soc. 53, 563 (2016)

    Article  Google Scholar 

  21. C.Y. Ma, W.J. Wang, J. Wang, C.Y. Miao, S.L. Li, Q.Y. Zhang, Thin Solid Films 545, 279 (2013)

    Article  ADS  Google Scholar 

  22. F.L. Martínez, M. Toledano-Luque, J.J. Gandía, J.J. Cárabe, W. Bohne, J. Röhrich, E. Strub, I. Mártil, J. Phys. D: Appl. Phys. 40, 5256 (2007)

    Article  ADS  Google Scholar 

  23. M. Fadel, O. Azim, M.O. Omer, R. Basily, Appl. Phys. A 66, 335 (1998)

    Article  ADS  Google Scholar 

  24. J. Khoshman, A. Khan, M. Kordesch, Surf. Coat. Technol. 202, 2500 (2008)

    Article  Google Scholar 

  25. M. Alvisi, S. Scaglione, S. Martelli, A. Rizzo, L. Vasanelli, Thin Solid Films 354, 19 (1999)

    Article  ADS  Google Scholar 

  26. Y. Kuo, C. Lin, Solid State Electron 89, 120 (2013)

    Article  ADS  Google Scholar 

  27. C. Jang, K. Kim, C. Choi, J. Display Technol. 8, 250 (2012)

    Article  ADS  Google Scholar 

  28. G. Haacke, Ann. Rev. Mater. Sci. 7, 73 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Sup Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JC., Kang, SJ., Choi, BG. et al. Physical property improvement of IZTO thin films using a hafnia buffer layer. Appl. Phys. A 124, 67 (2018). https://doi.org/10.1007/s00339-017-1500-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1500-6

Navigation