Skip to main content
Log in

Fabrication and characterization of multi-layer InAs/InGaAs quantum dot p-i-n GaAs solar cells grown on silicon substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reports on InAs/InGaAs quantum dot solar cells (QDSCs) deposited by molecular beam epitaxy (MBE) on (001) n-type silicon (n-Si) substrates. In-situ RHEED measurements show that InAs/InGaAs QDs SC has a high crystalline structure. The dislocation density in the active layer of the InAs/InGaAs QDSC and the lattice mismatch in the GaAs layer can be reduced by using an Si rough surface buffer layer (RSi). To show the effect of the QD layers, a reference SC with the same p-i-n structure as the InAs/InGaAs QDSC, but without InAs QDs, is also grown. The two SCs were studied by sepectroscopic ellipsometry (SE), in the 1–6 eV photon energy range, photoluminescence and photocurrent measurements. The optical constants of the two devices are determined in the photon energy range 1–6 eV from the SE data. The dominant features in the dielectric function spectra at ~ 3 and ~ 4.5 eV are attributed, respectively, to the E1 and E2 critical point structures of GaAs and InAs. The low-temperature photoluminescence spectrum of the InAs/InGaAs QDSC shows ground-state emissions, respectively, from the relatively small QDs near 1081 nm and from the large QDs near 1126 nm. Photocurrent measurements confirm the improved absorption performance (up to 1200 nm) of the InAs QDs SC which is ascribed to the optical absorption from the InAs/InGaAs QDs and the Si substrate as demonstrated by SE and photoluminescence measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Sakamoto, Y. Kondo, K. Uchida, K. Yamaguchi, J. Appl. Phys 112, 124515 (2012)

    Article  ADS  Google Scholar 

  2. W. Rouis, A. Sayari, M. Nouiri, M. Ezzedini, S. Rekaya, L. El, L. Mir, H. Sfaxi, Maaref, Int. J. Nanotechnology 12, 584 (2015)

    Article  ADS  Google Scholar 

  3. K. Tanabe, D. Guimard, D. Bordel, Y. Arakawa, Appl. Phys. Lett. 100, 193905 (2012)

    Article  ADS  Google Scholar 

  4. C.G. Bailey, D.V. Forbes, R.P. Raffaelle, S.M. Hubbard, Appl. Phys. Lett. 98, 163105 (2011)

    Article  ADS  Google Scholar 

  5. W. Shockley, H.J. Queisser, J. Appl. Phys 32, 510 (1961)

    Article  ADS  Google Scholar 

  6. S. Tomić, Phys. Rev B 82, 195321 (2010)

    ADS  Google Scholar 

  7. A. Sayari, M. Ezzidini, B. Azeza, S. Rekaya, E. Shalaan, S.J. Yaghmour, A.A. Al-Ghamdi, L. Sfaxi, R. M’ghaieth, H. Maaref, Sol. Energy Mater. Sol. Cells 113, 1 (2013)

    Article  Google Scholar 

  8. P. Demeester, A. Ackaert, G. Coudenys, I. Moerman, L. Buydens, I. Pollentier, P. Van Daele, Prog. Cryst. Growth Charact. Mater. 22, 53 (1991)

    Article  Google Scholar 

  9. T.W. Kang, Y.T. Oh, J.Y. Leem, T.W. Kim, J. Mater. Sci. Lett 11, 392 (1992)

    Article  Google Scholar 

  10. J.A. Carlin, S.A. Ringel, A. Fitzgerald, M. Bulsara, Sol. Energy Mater. Sol. Cells 66, 621 (2001)

    Article  Google Scholar 

  11. M. Yamaguchi, A. Yamamoto, Y. Itoh, J. Appl. Phys 59, 1751 (1986)

    Article  ADS  Google Scholar 

  12. Y. Edward, T.-H. Chang, G. Luo, C.-Y. Chang, J. Electron. Mater 43, 23 (2005)

    Google Scholar 

  13. W.-Y. Uen, Z.-Y. Li, S.-M. Lan, T.-N. Yang, H.-Y. Shin, Semicond. Sci. Technol 21, 852 (2006)

    Article  ADS  Google Scholar 

  14. Y. Matsunaga, S. Naritsuka, T. Nishinaga, J. Cryst. Growth 174, 635 (1997)

    Article  ADS  Google Scholar 

  15. M. Yamaguchi, J. Mater. Res. 6, 376 (1991)

    Article  ADS  Google Scholar 

  16. R. Venkatasubramanian, M.L. Timmons, J.B. Posthill, B.M. Keyes, R.K. Ahrenkiel, J. Cryst. Growth 107, 489 (1991)

    Article  ADS  Google Scholar 

  17. B. Azeza, L. Sfaxi, R. M’ghaieth, A. Fouzri, H. Maaref, J. Cryst. Growth 317, 104 (2011)

    Article  ADS  Google Scholar 

  18. B. Azeza, M. Ezzedini, Z. Zaaboub, R. M’ghaieth, L. Sfaxi, F. Hassen, H. Maaref, Current Appl. Phys 12, 1256 (2012)

    Article  ADS  Google Scholar 

  19. M. Lajnef, A. Bardaoui, I. Sagne, R. Chtouroua, H. Ezzaouia, Am. J. Appl. Sci 5, 605 (2008)

    Article  Google Scholar 

  20. R. Jemai, A. Alaya, O. Meskini, M. Nouiri, R. M’ghaieth, K. Khirouni, S. Alaya, Mater. Sci. Eng. B 137, 263 (2007)

    Article  Google Scholar 

  21. P. Akhter, A. Baig, A. Mufti, J. Phys. D Appl. Phys 22, 1924 (1989)

    Article  ADS  Google Scholar 

  22. B. Azeza, M.H. Hadj Alouane, B. Ilahi, G. Patriarche, L. Sfaxi, A. Fouzri, H. Maaref, R. M’ghaieth, Materials 8, 4544 (2015)

    Article  ADS  Google Scholar 

  23. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light. (Elsevier Science, New York, 1989)

    Google Scholar 

  24. M.S. Al-Ghamdi, A. Sayari, L. Sfaxi, J. Alloy. Compd. 685, 202 (2016)

    Article  Google Scholar 

  25. A. Alyamani, A. Sayari, A. Albadri, H. Albrithen, L. El Mir, Eur. Phys. J. Plus 131, 328 (2016)

    Article  Google Scholar 

  26. A. Sayari, L. El Mir, S. Al-Heniti, E. Shalaan, S.J. Yaghmour, S.A. Al-Thabaiti, A. Ahmed, F. Al-Ghamdi, Yakuphanoglu, J. Electroceram. 30, 221 (2013)

    Article  Google Scholar 

  27. S.Y. Lee, J.H. Shim, D.J. You, S. Ahn, H.M. Lee, Sol. Energy Mater. Sol. Cells 95, 142 (2011)

    Article  Google Scholar 

  28. C. Major, G. Juhász, P. Petrik, Z. Horváth, O. Polgár, M. Fried, Vacuum 84, 119 (2010)

    Article  ADS  Google Scholar 

  29. D.A.G. Bruggeman, Ann. Phys 416, 636 (1935)

    Article  Google Scholar 

  30. G.E. Jellison, F.A. Modine, Appl. Phys. Lett. 69, 371 (1996)

    Article  ADS  Google Scholar 

  31. G.E. Jellison, F.A. Modine, Appl. Phys. Lett. 69, 2137 (1996)

    Article  ADS  Google Scholar 

  32. S. Ozaki, S. Adachi, J. Appl. Phys 78, 3380 (1995)

    Article  ADS  Google Scholar 

  33. T.J. Kim, J.J. Yoon, S.Y. Hwang, Y.W. Jung, T.H. Ghong, Y.D. Kim, H. Kim, Y.C. Chang, Appl. Phys. Lett. 97, 171912 (2010)

    Article  ADS  Google Scholar 

  34. M. Fried, T. Lohner, W.A.M. Aarnink, L.J. Hanekamp, A. van Silfhout, J. Appl. Phys 71, 5260 (1992)

    Article  ADS  Google Scholar 

  35. E.S. Shatalina, S.A. Blokhin, A.M. Nadtochy, A.S. Payusov, A.V. Savelyev, M.V. Maximov, A.E. Zhukov, N.N. Ledentsov, A.R. Kovsh, S.S. Mikhrin, V.M. Ustinov, Semiconductors 44, 1308 (2010)

    Article  ADS  Google Scholar 

  36. L. Hoglund, P.O. Holtz, H. Pettersson, C. Asplund, Q. Wang, S. Almqvist, S. Smuk, E. Petrini, J.Y. Andersson, Appl. Phys. Lett. 93, 103501 (2008)

    Article  ADS  Google Scholar 

  37. C.Y. Ngo, S.F. Yoon, W.K. Loke, T.K. Ng, J. Cryst. Growth 311, 1885 (2009)

    Article  ADS  Google Scholar 

  38. Y. Okada, R. Oshima, A. Takata, J. Appl. Phys 106, 24306 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant no. (G-438-305-605.) The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sayari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omri, M., Sayari, A. & Sfaxi, L. Fabrication and characterization of multi-layer InAs/InGaAs quantum dot p-i-n GaAs solar cells grown on silicon substrates. Appl. Phys. A 124, 74 (2018). https://doi.org/10.1007/s00339-017-1493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1493-1

Navigation