Skip to main content
Log in

Polymeric phase change nanocomposite (PMMA/Fe:ZnO) for electronic packaging application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reported the effect of Fe-doped ZnO (Fe:ZnO) nanoparticles on the structural, morphological, thermal, optical and dielectric properties of PMMA matrix. Fe-doped ZnO nanoparticle was synthesized by co-precipitation method, after its surface modification incorporated into the PMMA matrix by free radical polymerization method. The phase analysis and crystal structure were investigated by XRD and FTIR technique. These studies confirmed the chemical structure of the PMMA/Fe:ZnO nanocomposite. FESEM image showed the pyramidal shape and high porosity of PMMA/Fe:ZnO nanocomposite. Thermal analysis of the sample was carried out by thermo-gravimetric analyzer. PMMA/Fe:ZnO nanocomposite was found to have better thermal stability compared to pure one. Broadband dielectric spectroscopic technique was used to investigate the transition of electrical properties of Fe-doped ZnO nanoparticle reinforced PMMA matrix in temperature range 313–373 K. The results elucidated a phase transition from glassy to rubbery state at 344 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.M. Xiong, Y. Xu, Q.G. Ren, Y.Y. Xia, Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging. J. Am. Chem. Soc. 130, 7522–7523 (2008)

    Article  Google Scholar 

  2. F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Ferromagnitism and possible application in spintronics of transition-metal doped ZnO films. Mater. Sci. Eng. R. 62, 1–35 (2008)

    Article  Google Scholar 

  3. D. Sridevi, K.V. Rajendran, Synthesis and optical characteristics of ZnO nanocrystals. Bull. Mater. Sci 32, 165–168 (2009)

    Article  Google Scholar 

  4. H.Y. Xu, Y.C. Liu, R. Mu, C.L. Shao, Y.M. Lu, D.Z. Shen, X.W. Fan, Fe-doping effects on electrical and optical properties of ZnO nanocrystalline films. Appl. Phys. Lett 86, 123107–123107 (2005)

    Article  ADS  Google Scholar 

  5. Z.H. Zhang, X. Wang, J.B. Xu, S. Muller, C. Ronning, Q. Li, Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures. Nat. Nanotechnol. 4, 523–527 (2009)

    Article  ADS  Google Scholar 

  6. M.L. Dinesha, G.D. Prasanna, C.S. Naveen, H.S. Jayanna, Structural and dielectric properties of Fe-doped ZnO nanoparticles. Indian J. Phys 87, 147–153 (2013)

    Article  ADS  Google Scholar 

  7. S. Manasi, M. Fahim, Dielectric properties of nanographite-filled PMMA composites prepared by in situ polymerization. Polym. Compos 33, 675–682 (2012)

    Article  Google Scholar 

  8. S. Ramesh, L.C. Wen, Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal properties of nanocomposite PMMA-LiCF3SO3–SiO2. Ionics, 16 (2010), 255–262

    Article  Google Scholar 

  9. D.Q. Zou, H. Yoshida, Size effect of silica nanoparticles on thermal decomposition of PMMA. J. Therm. Anal. Calorim 99, 21–26 (2010)

    Article  Google Scholar 

  10. S. Yu, P. Hing, X. Hu, Dielectric properties of polystyrene-aluminum-nitride composites. J. Appl. Phys 88, 398–404 (2000)

    Article  ADS  Google Scholar 

  11. T. Ramanathan, S. Stankovich, D.A. Dikin, H. Liu, H. Shen, S.T. Nguyen, L.C. Brinson, Graphitic nanofillers in PMMA nanocomposites—an investigation of particle size and dispersion and their influence on nanocomposite properties. J. Polym. Sci. Part B, Polym. Phys 45, 2097–2112 (2007)

    Article  ADS  Google Scholar 

  12. J.M. Hwu, G.J. Jiang, Z.M. Gao, W. Xie, W.P. Pan, The characterization of organic modified clay and clay-filled PMMA nanocomposites. J. Appl. Polym. Sci 83, 1702–1710 (2002)

    Article  Google Scholar 

  13. X.Y. Yuan, L.L. Zou, C.C. Liao, J.W. Dai, Improved properties of chemically modified graphene/poly(methyl methacrylate) nanocomposites via a facile in-situ bulk polymerization. Express Polym. Lett 6, 847–858 (2012)

    Article  Google Scholar 

  14. B.J. Ash, R.W. Siegel, L.S. Schadler, Glass-transition temperature behavior of alumina/PMMA nanocomposites. J. Polym. Sci. Part B, Polym. Phys 42, 4371–4383 (2004)

    Article  ADS  Google Scholar 

  15. P. Thomas, B.S. Dakshayini, H.S. Kushwaha, R. Vaish, Effect of Sr2TiMnO6 fillers on mechanical, dielectric and thermal behaviour of PMMA polymer. J. Adv. Dielectr 5, 1550018–1550011 (2015)

    Article  ADS  Google Scholar 

  16. A. Maleki, B. Shahmoradi, K. Byrappa, Solar degradation of direct blue 71 using surface modified iron doped ZnO hybrid nanomaterials. Water Sci. Technol 65, 1923–1928 (2012)

    Article  Google Scholar 

  17. A. Sawalha, M.A. -Abdeen, A. Sedky, Electrical conductivity study in pure and doped ZnO ceramic system. Phys. B 404, 1316–1320 (2009)

    Article  ADS  Google Scholar 

  18. H. Colak, O. Türkoglu, Synthesis, crystal structural and electrical conductivity properties of Fe-doped zinc oxide powders at high temperatures. J. Mater. Sci. Technol 28, 268–274 (2012)

    Article  Google Scholar 

  19. S. Soumya, A. Peer Mohamed, L. Paul, K. Mohan, S. Ananthakumar, Near IR reflectance characteristics of PMMA/ZnO nanocomposites for solar thermal contral interface films. Sol. Energ. Mat. Sol. C 125, 102–112 (2014)

    Article  Google Scholar 

  20. S. Wacharawichanant, N. Thongbunyoung, P. Churdchoo, T. Sookjai, S. Thongyai, Morphology and properties of poly(styrene-co-acrylonitrile)/poly(methyl methacrylate)/zinc oxide composites. J. Reinf. Plast. Comp 32, 1112–1121 (2013)

    Article  Google Scholar 

  21. I.G. Lesci, G. Balducci, F. Pierini, F. Soavi, N. Roveri, Surface features and thermal stability of mesoporous Fe-doped geoinspired synthetic chrysotile nanotubes. Micropor. Mesopor. Mat 197, 8–16 (2014)

    Article  Google Scholar 

  22. S.D. Bruck, Thermally stable polymeric materials. J. Chem. Educ 42, 18 (1965)

    Article  Google Scholar 

  23. R.B. P.Maji, M. Choudhary, Majhi, Structural, electrical and optical properties of silane-modified ZnO reinforced PMMA matrix and its catalytic activities. J. Non-Cryst. Solids 456, 40–48 (2017)

    Article  ADS  Google Scholar 

  24. P. Chen, X. Ma, Y. Zhang, D. Li, D. Yang, Electrophotoluminescence of sol-gel derived ZnO film: Effect of electric field on near-band-edge photoluminescence., Opt. Express, 17, 11434–11439 (2009)

    Article  ADS  Google Scholar 

  25. W. Wang, M.K. Datta, P.N. Kumta, Silicon-based composite anodes for Li-ion rechargeable batteries. J. Mater. Chem 17, 3229–3237 (2007)

    Article  Google Scholar 

  26. J.A. Paramo, Y.M. Strzhemechny, A. Anžlovar, M. Žigon, Z.C. Ore, Enhanced room temperature excitonic luminescence in ZnO/PMMA nanocomposites prepared by bulk polymerization. J. Appl. Phys 108, 023517–023523 (2010)

    Article  ADS  Google Scholar 

  27. T. Pandiyarajan, R. Udayabhaskar, B. Karthikeyan, Role of Fe doping on structural and vibrational properties of ZnO nanostructures. Appl. Phys. A 107, 411–419 (2012)

    Article  ADS  Google Scholar 

  28. C. Wang, Z. Chen, Y. He, L. Li, D. Zhang, Structure, morphology and properties of Fe-doped ZnO films prepared by facing-target magnetron sputtering system. Appl. Surf. Sci 255, 6881–6887 (2009)

    Article  ADS  Google Scholar 

  29. M. Silambarasan, S. Saravanan, T. Soga, Raman and photoluminescence studies of Ag and Fe-doped ZnO nanoparticles. Int. J. Chem. Tech. Res 7, 1644–1650 (2015)

    Google Scholar 

  30. C.X. Xu, X.W. Sun, X.H. Zhang, L. Ke, S.J. Chua, Photoluminescent properties of copper-doped zinc oxide nanowires. Nanotechnology 15, 856–861 (2004)

    Article  ADS  Google Scholar 

  31. S.A. Studenikin, N. Golego, M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys 84, 2287–2294 (1998)

    Article  ADS  Google Scholar 

  32. F.H. Leiter, H.R. Alves, A. Hofstaetter, D.M. Hoffmann, B.K. Meyer, The oxygen vacancy as the origin of a green emission in undoped ZnO. Phys. Status Solidi (b) 226, R4–R5 (2001)

    Article  ADS  Google Scholar 

  33. N.O. Korsunska, L.V. Borkovska, B.M. Bulakh, L.Yu.. Khomenkova, V.I. Kush- nirenko, I.V. Markevich, The influence of defect drift in external electric field on green luminescence of ZnO single crystals. J. Lumin 102–103, 733–736 (2003)

    Article  Google Scholar 

  34. D. Morantz, C. Bilen, Thermoluminescence and induced phosphorescence in irradiated doped PMMA. Polymer 16, 745–748 (1975)

    Article  Google Scholar 

  35. N.S. Sabri, A.K. Yahya, M.K. Talari, Emission properties of Mn doped ZnO nanoparticles prepared by mechanochemical processing. J. Lumin 132, 1735–1739 (2012)

    Article  Google Scholar 

  36. G. Haibo Zeng, Y. Duan, S. Li, X. Yang, W. Xu, Cai, Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Adv. Funct. Mater 20, 561–572 (2010)

    Article  Google Scholar 

  37. A. Broido, A simple sensitive graphical method of treating thermogravimetrie analysis data simple. J. Polym. Sci. A2 7, 1761–1773 (1969)

    Article  Google Scholar 

  38. S. Sultana, M.Z. Rafiuddin, K. Khan, Umar, Synthesis and characterization of copper ferrite nanoparticles doped polyaniline. J. Alloys Compd. 535, 44–49 (2012)

    Article  Google Scholar 

  39. Y.L. Tsai, C.L. Huang, C.C. Wei, Improvement of nonlinearity in a ZnO varistor by Al2O3 doping. J. Mater. Sci. Lett 4, 1305–1307 (1985)

    Article  Google Scholar 

  40. W.G. Carlson, T.K. Gupta, Improvement varistor non-linearity via donor impurity doping. J. Appl. Phys 53, 5746–5753 (1982)

    Article  ADS  Google Scholar 

  41. R.V. Mangalaraja, P. Manohar, F.D. Gnanam, Electrical and magnetic properties of Ni0.8Zn0.2Fe2O4/silica composite prepared by sol–gel method. J. Mater. Sci 39, 2037–2042 (2004)

    Article  ADS  Google Scholar 

  42. P. Maji, P.P. Pande, R.B. Choudhary, Effect of Zn(NO3)2 filler on the dielectric permittivity and electrical modulus of PMMA. Bull. Mater. Sci 38, 417–424 (2015)

    Article  Google Scholar 

  43. M. Majhi, R.B. Choudhary, P. Maji, CoCl2 reinforced polymeric nanocomposites of conjugated polymer (polyaniline) and its conductive properties. Bull. Mater. Sci 38, 1195–1203 (2015)

    Article  Google Scholar 

  44. F. Kröger, H. Vink, Relations between the concentrations of imperfections in crystalline solids. Solid State Phys 3, 307–435 (1956)

    Article  Google Scholar 

  45. X.Y. Huang, C. Zhi, P.K. Jiang, D. Golberg, Y. Bando, T. Tanaka, Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology 23, 455705–455701 (2012)

    Article  ADS  Google Scholar 

  46. T.G. Fox, P.J. Flory, 2nd-Order Transition temperatures and related properties of polystyrene.1. Influence of molecular weight. J. Appl. Phys 21, 581–591 (1950)

    Article  ADS  Google Scholar 

  47. Q. Li, X.L. Gao, Q.B. Zheng, Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. eXPRESS Polym. Lett. 3, 769–777 (2009)

    Article  Google Scholar 

  48. Y. Song, Y. Pan, Q. Zheng, X.-S. Yi, Electric self heating behavior of graphite-filled high-density polyethylene composites. J. Polym. Sci. Pol. Phys 38, 1756–1763 (2000)

    Article  ADS  Google Scholar 

  49. J. Fournier, G. Boiteux, G. Seytre, G. Marichy, Positive temperature-coefficient effect in carbon black epoxy polymercomposites. J. Mater. Sci. Lett 16, 1677–1679 (1997)

    Article  Google Scholar 

  50. G.R. Pike, ac Conductivity of Scandium Oxide and a New Hopping Model for Conductivity., Phys. Rev. B, 6 1572(1972)

  51. A.K. Jonscher, Electronic properties of amorphous dielectric films. Thin Solid Films 1, 213–234 (1967)

    Article  ADS  Google Scholar 

  52. P. Maji, R.B. Choudhary, M. Majhi, Structural, optical and dielectric properties of ZrO2 reinforced polymeric nanocomposite films of polymethylmethacrylate (PMMA). Optik. 127, 4848–4853 (2016)

    Article  ADS  Google Scholar 

  53. M. Majhi, R.B. Choudhary, P. Maji, TiO2 reinforced polymeric nanocomposites of HCl-doped polyaniline (PANI) and their properties. https://doi.org/10.1002/pc.23994

  54. P. Maji, R.B. Choudhary, Facile synthesis, dielectric properties and electrocatalytic activities of PMMA-NiFe2O4 nanocomposite. Mat. Chem. Phys 193, 391–400 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, IIT (ISM), Dhanbad for his kind support and encouragement. Pranabi Maji and Malati Majhi also thankful to IIT (ISM), Dhanbad for providing a Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Bilash Choudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maji, P., Choudhary, R.B. & Majhi, M. Polymeric phase change nanocomposite (PMMA/Fe:ZnO) for electronic packaging application. Appl. Phys. A 124, 70 (2018). https://doi.org/10.1007/s00339-017-1487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1487-z

Navigation