Skip to main content
Log in

Fabrication of ZnFe2O4/TiO2 nanotube array composite to harness the augmented photocurrent density under visible light

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnFe2O4 micro crystals were deposited over electrochemically anodized TiO2 nanotube array using cathodic electrode deposition method. TiO2 nanotubes owing to their morphological advantage significantly harness the UV region of solar spectrum. However, the optical response of TiO2 nanotube array in visible region is quite negligible due to large band gap. Bare TiO2 nanotubes show a photocurrent density of 0.18 mAcm−2 on exposing TiO2 nanotube electrode to visible light source. However, on mounting ZnFe2O4 over TiO2 nanotubes, the photocurrent density reaches to 0.52 mAcm−2, which is ~ 3 times the photocurrent density shown by bare TiO2 nanotubes under similar conditions. The appreciable enhancement in photocurrent density is attributed to effective visible light active band gap in the resulting hybrid electrode. Moreover, the suitable band edge positions in individual semiconductors facilitate the smooth charge transfer in the resulting hybrid structure on account of band bending at their interface thereby reduces the recombination rate and charge transfer resistance considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Cheshideh, F. Nasirpouri, J. Electroanal. Chem. (2017). https://doi.org/10.1016/j.jelechem.2017.05.024

    Google Scholar 

  2. H. Feng, Y. Liang, K. Guo, W. Chen, D. Shen, L. Huang, Y. Zhou, M. Wang, Y. Long, Env. Sci. Tech. Lett. (2016). https://doi.org/10.1021/acs.estlett.6b00410

    Google Scholar 

  3. X. Zhu, F. Zhang, M. Wang, J. Ding, S. Sun, J. Bao, C. Gao, App. Sur. Sci. (2014). https://doi.org/10.1016/j.apsusc.2014.07.051

    Google Scholar 

  4. U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C (2008). https://doi.org/10.1016/j.jphotochemrev.2007.12.003

    Google Scholar 

  5. A. Fog, R.P. Buck, Sens. Actuator (1984). https://doi.org/10.1016/0250-6874(84)80004-9

    Google Scholar 

  6. M. Gratzel, Inorg. Chem. (2005). https://doi.org/10.1021/ic0508371

    Google Scholar 

  7. G. Liu, N. Hoivik, K. Wang, H. Jakobsen, Sol. Energy Mater. Sol. Cells (2012). https://doi.org/10.1016/j.solmat.2012.05.037

    Google Scholar 

  8. K.S. Brammer, C.J. Frandsen, S. Jin, Trends Biotechnol. (2012).https://doi.org/10.1016/j.tibtech.2012.02.005

    Google Scholar 

  9. A. Fujishima, K. Honda, Nature, (1972) https://doi.org/10.1038/238037a0

    Google Scholar 

  10. J. Zhang, C. Tang, J. Bang, Electrochem. Comm. (2010). https://doi.org/10.1016/j.elecom.2010.05.046

    Google Scholar 

  11. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mat. Res. (2001). https://doi.org/10.1557/JMR.2001.0457

    Google Scholar 

  12. S. Rani, S.C. Roy, M. Paulose, O.K. Varghese, G.K. Mor, S. Kim, S. Yoriya, T.J. Latempa, C.A. Grimes, Phys. Chem. Chem. Phys. (2010). https://doi.org/10.1039/b924125f

    Google Scholar 

  13. S. Kurian, H. Seo, H. Jeon, J.Phy. Chem. (2013). https://doi.org/10.1021/jp405207e

    Google Scholar 

  14. T. Tachikawa, S. Tojo, M. Fujitsuka, T. Sekino, T. Majima, J. Phy. Chem. B Lett. (2006). https://doi.org/10.1021/jp063800q

    Google Scholar 

  15. J.M. Macak, P. Schmuki, Electrochim. Acta (2006). https://doi.org/10.1016/j.electacta.2006.07.021

    Google Scholar 

  16. M. Liu, R. Inde, M. Nishikawa, X. Qiu, D. Atarashi, E. Sakai, Y. Nosaka, K. Hashimoto, M. Miyauchi, ACS Nano (2014). https://doi.org/10.1021/nn502247x

    Google Scholar 

  17. M. Wang, L. Sun, J. Cai, P. Huang, Y. Su, C. Lin, J. Mater. Chem. A (2013). https://doi.org/10.1039/c3ta12577g

    Google Scholar 

  18. J. Philip, G. Gnanaprakash, G. Panneerselvam, M.P. Antony, T. Jayakumar, B. Raj, J. App. Phys. (2007). https://doi.org/10.1063/1.2777168

    Google Scholar 

  19. J. Lei, Q. Shao, X. Wang, Q. Wei, L. Yang, H. Li, Y. Huang, B. Hou, Mater. Res. Bull. (2017). https://doi.org/10.1016/j.materresbull.2017.07.048

    Google Scholar 

  20. M. Boda, M.A. Shah, Mater. Res. Exp. (2017). https://doi.org/10.1088/2053-1591/aa7cd2

    Google Scholar 

  21. M. Chang, Y. Song, H. Zhang, Y. Sheng, K. Zheng, X. Zhou, H. Zou, RSC Adv. (2015). https://doi.org/10.1039/C5RA07525D

    Google Scholar 

  22. T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, J. Sci. Rep. (2014). https://doi.org/10.1038/srep04043

    Google Scholar 

  23. Y. Rambabu, M. Jaiswal, S.C. Roy, Catal. Today (2016). https://doi.org/10.1016/j.cattod.2016.01.016

    Google Scholar 

  24. D. Wu, M. Long, W. Cai, C. Chen, Y. Wu, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2010.04.189

    Google Scholar 

  25. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidif B (1966). https://doi.org/10.1002/pssb.19660150224

    Google Scholar 

  26. C. Adan, J. Marugan, E. Sanchez, C. Pablos, R.V. Grieken, Electrochim. Acta (2016). https://doi.org/10.1016/j.electacta.2016.01.088

    Google Scholar 

  27. Y. Hou, X.Y. Li, Q.D. Zhao, X. Quan, G.H. Chen, Adv. Funct. Mat. (2010). https://doi.org/10.1002/adfm.200902390

    Google Scholar 

  28. F. Grasset, N. Labhsetwar, D. Li, D.C. Park, N. Saito, H. Haneda, O. Cador, T. Roisnel, S. Mornet, E. Duguet, J. Portier, Langmuir (2002) https://doi.org/10.1021/la020322b

    Google Scholar 

  29. M.K. Roy, H.C. Verma, J. Magn. Mat. (2006). https://doi.org/10.1016/j.jmmm.2006.02.229

    Google Scholar 

  30. K. Kim, M.J. Kim, S.I. Kim, J.H. Jang, Sci. Rep. (2013). https://doi.org/10.1038/srep03330

    Google Scholar 

  31. F. Santiago, G. Belmonte, J. Bisquert, A. Zaban, P. Salvador, J. Phy. Chem. B (2002). https://doi.org/10.1021/jp0119429

    Google Scholar 

  32. Y. Yao, J. Qin, H. Chen, F. Wei, X. Liu, J. Wang, S. Wang, J. Hazard. Mat. (2015). https://doi.org/10.1016/j.jhazmat.2015.02.042

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Somnath C. Roy (ENL, IIT Madras) and Prof. M. S. Ramachandra Rao (MSRC IIT Madras) research group for their kind support. We are too thankful to Mohd. Azhardin Ganayee (Research Scholar at Prof. T. Pradeeps lab, IIT Madras) for his technical and emotional support. Finally, we would like to extend our gratitude to DST funded Nanomission lab in NIT Srinagar for the part of the experimental work we performed herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffar Ahmad Boda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boda, M.A., Shah, M.A. Fabrication of ZnFe2O4/TiO2 nanotube array composite to harness the augmented photocurrent density under visible light. Appl. Phys. A 124, 55 (2018). https://doi.org/10.1007/s00339-017-1485-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1485-1

Navigation