Skip to main content

Advertisement

Log in

Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV–visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30–40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90–3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.M.O. Dalia, A.M. Mustafa, Synthesis and characterization of zinc oxide nanoparticles using zinc acetate dihydrate and soium hydroxide. J. Nanosci. Nanoeng. 1, 248–251 (2015)

    Google Scholar 

  2. A. Benazir, K. Gomathi, S. Aram, Structural and optical properties of Zn1–xNixO nanoparticles synthesized by co-precipitation method. J. Environ. Nanotechnol. 6, 39–43 (2017)

    Article  Google Scholar 

  3. K.P. Kamal, G. Dambaru, A. Venugopal, V.M.A. Mohan, P. Ganngam, L.P. Narasimham, K.S. Hrushi, B.P. Brahma, Green synthesized zinc oxide (ZnO) nanoparticles induce oxidative stress and DNA damage in Lathyrus sativus L. Root Bioassay Syst. Antioxid. 6, 35–51 (2017)

    Google Scholar 

  4. A.K. Barve, S.M. Gadegone, M.R. Lanjewar, R.B. Lanjewar, Synthesis of ZnO nanomaterial by precipitation method and its characterization. Int. J. Chem. Phys. Sci 4, 432–439 (2015)

    Google Scholar 

  5. S. Sabita, C.B. Subash, P.S. Shankar, P.J. Leela, Synthesis and study of zinc oxide nanoparticles for dye sensitized solar cell. Res. J. Phys. Sci. 5, 6–10 (2017)

    Google Scholar 

  6. R.A. Zargar, M. Arora, Synthesis and characterization of ZnO nanoparticles for biomedical applications. Glob. J. Nanomed. 2, 1–3 (2017)

    Google Scholar 

  7. K. Zheng, K. Zidek, M. Abdellah, P. Chabera, M.S. Abd El-sadek, T. Pullerits, Effect of metal oxide morphology on electron injection from CdSe quantum dots to ZnO. Appl. Phys. Lett. 102, 163119-1–163119-5 (2013)

    ADS  Google Scholar 

  8. M. Vaseem, A. Umar, Y.B. Hanh, ZnO nanoparticles: growth, properties, and applications. in Metal Oxide Nanostructures and their Applications, ed. by A. Ummer, Y.B. Hanh (5 American Scientific Publishers, Los Angeles, 2010) 1–36.

    Google Scholar 

  9. Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77, 2325–2331 (2001)

    Article  Google Scholar 

  10. J.W. Rasmussen, E. Martinez, P. Louka, G. Denise, D.G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 7, 1063–1077 (2010)

    Article  Google Scholar 

  11. J.L. Watson, T. Fang, C.O. Dimkpa, D.W. Britt, J.E. McLean, A. Jacobson, A.J. Anderson, The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28, 101–112 (2015)

    Article  Google Scholar 

  12. H. Ma, P.L. Williams, S.A. Diamond, Ecotoxicity of manufactured ZnO nanoparticles—A review. Environ. Pollut. 172, 76–85 (2013)

    Article  Google Scholar 

  13. Z. An-Qi, Z. Lu, S. Li, Q. Dong-Jin, C. Meng, Morphology-controllable synthesis of ZnO nano-microstructures by a solvothermal process in ethanol solution Cryst. Res. Technol. 48, 947–955 (2013)

    Article  Google Scholar 

  14. E.R. Shaaban, A.M.A. Mostafa, H. Shokry Hassan, M.S. Abd El-Sadek, G.Y. Mohamed, I. Sharaf, Effect of γ-irradiation on structural and optical ellipsometry parameters of ZnO nanocrystalline. Int. J. Thin Film Sci. Technol. 3, 129–141 (2014)

    Article  Google Scholar 

  15. S.D. Lee, S.H. Nam, M.H. Kim, J.H. Boo, Synthesis and photocatalytic property of ZnO nanoparticles prepared by spray-pyrolysis method. Phys. Proc. 32, 320–326 (2012)

    Article  ADS  Google Scholar 

  16. H.P. Suryawanshi, S.G. Bachhav, D.R. Patil, Hydrothermal synthesis of zinc oxide and its photocatalytic effect. IJCPS 4, 483–486 (2015)

    Google Scholar 

  17. B. Sunandan, D. Joydeep, Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 1–18 (2009)

    Google Scholar 

  18. A.S. Nehal, E.K. Maged, M.I. Ebtisam, Synthesis and characterization of ZnO nanotubes by hydrothermal method. IJSRP 5, 1–4 (2015)

    Google Scholar 

  19. A.R. Reddy, A.N. Mallika, K.S. Babu, K.V. Reddy, Hydrothermal synthesis and characterization of ZnO nanocrystals. Int. J. Min. Metall. Mech. Eng. 3, 52–55 (2015)

    Google Scholar 

  20. S.N. Shaha, I.S. Alib, A.S. Rizwan, M. Naeema, B. Yasmeen, S.A. Rehan, S.R. Masood, K. Yousuf, K.S. Sikander, Synthesis and characterization of zinc oxide nanoparticles for antibacterial applications. J. Basic Appl. Sci. 12, 205–210 (2016)

    Google Scholar 

  21. K.P. Saroj, A novel chemical approach to fabricate ZnO Nanostructure, PhD thesis, Indian Institute of Technology Kharagpur, (2008)

  22. K. Venkateswarlu, D. Sreekanth, M. Sandhyarani, V. Muthupandi, A.C. Bose, N. Rameshbabu, X-ray peak profile analysis of nanostructured hydroxyapatite and fluorapatite. Int. J. Biosci. 2, 389–393 (2012)

    Google Scholar 

  23. C.M. Jay, M. Sathya, K. Pushpanathan, Effect of pH on crystal size and photoluminescence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metall. Sin. (Engl. Lett.) 28, 394–404 (2015)

    Article  Google Scholar 

  24. K.G. Williamson, H.W. Hall, X-ray broadening from field aluminium and wolfram. Acta Metall. 1, 1–22 (1953)

    Article  Google Scholar 

  25. S.K.V. Sesha, K.P. Venkateswara, X-ray peak broadening analysis and optical studies of ZnO nanoparticles derived by surfactant assisted combustion synthesis. J. Nano Electron. Phys. 5, 02026-1–02026-6 (2013)

    Google Scholar 

  26. J. Markmann, V. Yamakov, J. Weissemuller, Validating grain size analysis from X-ray line broadening: a virtual experiment. J. Scr. Mater 59, 15–18 (2008)

    Article  Google Scholar 

  27. A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, Structural, optical and EPR studies on ZnO:Cu nanopowders prepared via low temperature solution combustion synthesis. J. Alloy. Compd. 509, 5349–5355 (2011)

    Article  Google Scholar 

  28. D.M. Fernandes, R. Silva, A.A.W. Hechenleitner, E. Radovanovic, M. MAC, E.A.G. Pineda, Synthesis and characterization of ZnO, CuO and a mixed Zn and Cu oxide. Mater. Chem. Phys. 115, 110–115 (2009)

    Article  Google Scholar 

  29. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo, C.G. Lee, Rapid and cost effective synthesis of ZnO nanorods using microwave irradiation technique. Funct. Mater. Lett. 4, 1–5 (2011)

    Article  Google Scholar 

  30. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 105, 013502-1–013502-5 (2009)

    ADS  Google Scholar 

  31. S. Fujita, K. Matsuura, Inclusion of zinc oxide nanoparticles into virus-like peptide nanocapsules self-assembled from viral β-annulus peptide. Nanomaterials 4, 778–791 (2014)

    Article  Google Scholar 

  32. Z.W. Liang, X.A. Yu, B.F. Lei, P.Y. Liu, W.J. Mai, Novel blue–violet photoluminescence from sputtered ZnO thin films. J. Alloys Compd. 509, 5437–5440 (2011)

    Article  Google Scholar 

  33. Y. Hu, H.J. Chen, Preparation and characterization of nanocrystalline ZnO particles from a hydrothermal process. J. Nanopart. Res. 10, 401–407 (2008)

    Article  ADS  Google Scholar 

  34. C. Aydın, M.S. Abd El-sadek, K. Zheng, I.S. Yahia, F. Yakuphanoglu, Synthesis, diffused reflectance and electrical properties of nanocrystalline Fe-doped ZnO via sol–gel calcination technique. Opt. Laser Technol. 48, 447–452 (2013)

    Article  ADS  Google Scholar 

  35. R. Bekkari, L. laânab, D. Boyer, R. Mahiou, B. Jaber, Influence of the sol gel synthesis parameters on the photoluminescence properties of ZnO nanoparticles. Mater. Sci. Semicond. Process. 71, 181–187 (2017)

    Article  Google Scholar 

  36. J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol–gel. Proc Chem 19, 211–216 (2016)

    Article  Google Scholar 

  37. S. Bagheri, K.G. Chandrappa, S.B. Abd Hamid, Facile synthesis of nano-sized ZnO by direct precipitation method. Der Pharma Chemica 5, 265–270 (2013)

    Google Scholar 

  38. N.A. Salahuddin, M. El-Kemary, E.M. Ibrahim, Synthesis and characterization of ZnO nanoparticles via precipitation method: effect of annealing temperature on particle size. Nanosci. Nanotechnol. 5, 82–88 (2015)

    Google Scholar 

  39. S. Klubnuan, P. Amornpitoksuk, S. Suwanboon, Structural, optical and photocatalytic properties of MgO/ZnO nanocomposites prepared by a hydrothermal method. Mater. Sci. Semicond. Process. 39, 515–520 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Al-Azhar University and South Valley University for providing administrative and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Wasly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasly, H.S., El-Sadek, M.S.A. & Henini, M. Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method. Appl. Phys. A 124, 76 (2018). https://doi.org/10.1007/s00339-017-1482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1482-4

Navigation