Skip to main content
Log in

Pulsed laser deposition of chalcogenide sulfides from multi- and single-component targets: the non-stoichiometric material transfer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mass transfer from target to films is incongruent for chalcogenide sulfides in contrast to the expectations of pulsed laser deposition (PLD) as a stoichiometric film growth process. Films produced from a CZTS (Cu2ZnSnS4) multi-component target have no Cu below a fluence threshold of 0.2 J/cm2, and the Cu content is also very low at low fluence from a single-component target. Above this threshold, the Cu content in the films increases almost linearly up to a value above the stoichiometric value, while the ratio of the concentration of the other metals Zn to Sn (Zn/Sn) remains constant. Films of a similar material CTS (Cu2SnS3) have been produced by PLD from a CTS target and exhibits a similar trend in the same fluence region. The results are discussed on the basis of solid-state data and the existing data from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Eason, Pulsed laser deposition of thin films. (Wiley, New York, 2007)

    Google Scholar 

  2. D.B. Chrisey, G.K. Hubler, Pulsed laser deposition of thin films. (Wiley, New York, 1994)

    Google Scholar 

  3. D. Dijkkamp, T. Venkatesan, X.D. Wu, S.A. Shaheen, N. Jisrawi, Y.H. Min-Lee, W.L. McLean, M. Croft, Appl. Phys. Lett. 51, 619 (1987)

    Article  ADS  Google Scholar 

  4. D. Baüerle, Laser processing and chemistry, 4th edn. (Springer, Berlin, 2011)

    Book  Google Scholar 

  5. T. Ohnishi, K. Shibuya, T. Yamamoto, M. Lippmaa, J. Appl. Phys. 103, 103703 (2008)

    Article  Google Scholar 

  6. S. Canulescu, E.L. Papadopoulou, D. Anglos, T. Lippert, C.W. Schneider, A. Wokaun, J. Appl. Phys. 105, 063107 (2009)

    Article  ADS  Google Scholar 

  7. T.C. Droubay, L. Qiao, T.C. Kaspar, M.H. Engelhard, V. Shutthanandan, S.A. Chambers,  Appl. Phys. Lett. 97, 124105 (2010)

    Article  ADS  Google Scholar 

  8. C. Klamt, A. Dittrich, B. Jaquet, C. Eberl, F. Döring, H.-U. Krebs, Appl. Phys. A 122, 701 (2016)

    Article  ADS  Google Scholar 

  9. A. Dittrich, C. Eberl, S. Schlenkrich, F. Schlenkrich, F. Döring, H.-U. Krebs, Appl. Phys. A 122, 301 (2016)

    Article  ADS  Google Scholar 

  10. C.B. Arnold, M.J. Aziz, Appl. Phys. A 69, S23–S27 (1999)

    Article  ADS  Google Scholar 

  11. A. McEvoy, T. Markvart, L. Castaner, Solar cells. Materials, manufacture and operation. (Academic, Amsterdam, 2013)

    Google Scholar 

  12. K. Ito, Copper zinc tin sulfide-based solar cells. (Wiley, New York, 2015)

    Google Scholar 

  13. M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Prog. Photovolt: Res. Appl 25, 668 (2017)

    Article  Google Scholar 

  14. A. Cazzaniga, A. Crovetto, C. Yan, K. Sun, X. Hao, J.R. Estelrich, S. Canulescu, E. Stamate, N. Pryds, O. Hansen, J. Schou, Sol. Energy Mat. Solar Cells 166, 91 (2017)

    Article  Google Scholar 

  15. K. Moriya, K. Tanaka, H. Uchiki, Jpn. J. Appl. Phys. 46, 5780 (2007)

    Article  ADS  Google Scholar 

  16. L. Reimer, Scanning electron microscopy. (Springer, Berlin, 1985)

    Book  Google Scholar 

  17. R.B. Ettlinger, A. Crovetto, S. Canulescu, A. Cazzaniga, L. Ravnkilde, T. Youngman, O. Hansen, N. Pryds, J. Schou, Appl. Phys. A 122, 466 (2016)

    Article  ADS  Google Scholar 

  18. R.B. Ettlinger, ph.d. thesis (DTU, 2016)

  19. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, Scanning 29, 92 (2007)

    Article  Google Scholar 

  20. S. Valkealahti, J. Schou, R.M. Nieminen, J. Appl. Phys 65, 2258 (1989)

    Article  ADS  Google Scholar 

  21. http://henke.lbl.gov/

  22. S. Canulescu, M. Döbeli, X. Yao, T. Lippert, S. Amoruso, J. Schou, Phys. Rev. Mat. 1, 073402 (2017)

  23. J. Chen, M. Döbeli, D. Stender, K. Conder, A. Wokaun, C.W. Schneider, T. Lippert, Appl. Phys. Lett. 105, 114104 (2014)

    Article  ADS  Google Scholar 

  24. A. Sambri, C. Aruta, E. Di Gennaro, X. Wang, U. Scotti di Uccio, F. Miletto Granozio, S. Amoruso, J. Appl. Phys. 119, 125301 (2016)

    Article  ADS  Google Scholar 

  25. J. Schou, Appl. Surf. Sci. 255, 5191 (2009)

    Article  ADS  Google Scholar 

  26. J. Chen, Y. Lv, M. Döbeli, Y. Li, X. Shi, L. Chen, Sci. China Material 58, 263 (2015)

    Article  Google Scholar 

  27. D.L. Smith, Thin film deposition: principles and practice, (McGraw-Hill, New York, 1995)

    Google Scholar 

  28. T.N. Hansen, J. Schou, J.G. Lunney, Appl. Phys. Lett. 72, 1829 (1998)

    Article  ADS  Google Scholar 

  29. P. Sigmund, N.Q. Lam, Kgl. Dansk. Vidensk. Mat. Fys. Medd 43, 255 (1993)

    Google Scholar 

  30. P. Sigmund, M.W. Sckerl, Nucl. Instr. Meth. B 82, 242 (1993)

    Article  ADS  Google Scholar 

  31. J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C.N. Afonso, Phys. Rev. B 76, 035435 (2007)

    Article  ADS  Google Scholar 

  32. P. Nemec, V. Nazabal, M. Pavlista, A. Moreac, M. Frumar, M. Vlcek, Mat. Chem. Phys. 117, 23 (2009)

    Article  Google Scholar 

  33. R.A. Wibowo, E.S. Lee, B. Munir, K.H. Kim, Phys. Stat. Sol. (a) 204, 3373 (2007)

    Article  ADS  Google Scholar 

  34. M. Kotani, H. Miura, Y.-G. Shim, K. Wakita, Phys. Stat. Sol. (c) 1600212 (2017)

  35. S.-C. Chen, D.-H. Hsieh, H. Jiang, Y.-K. Liao, Fang-I. Lai, C.-H. Chen, C.W. Luo, J.-Y. Juang, Y.-L. Chueh, K.- H. Wu, H.-C. Kuo, Nanoscale. Res. Lett. 9, 280 (2014)

    Article  ADS  Google Scholar 

  36. C. Kittel, Introduction to solid state physics,8 ed. (Wiley, New York, 2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Danish Council for Strategic Research. The work was also supported by the institutional research funding project IUT 19–28 of the Estonian Ministry of Education and Research, and by the European Union Regional Development Fund, Project TK141.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jørgen Schou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schou, J., Gansukh, M., Ettlinger, R.B. et al. Pulsed laser deposition of chalcogenide sulfides from multi- and single-component targets: the non-stoichiometric material transfer. Appl. Phys. A 124, 78 (2018). https://doi.org/10.1007/s00339-017-1475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1475-3

Navigation