Polypyrrole–vanadium oxide nanocomposite: polymer dominates crystallanity and oxide dominates conductivity


A hybrid nanocomposite of polypyrrole (Ppy)–V2O5 has been fabricated and characterized for better understanding of material enabling one to use this for appropriate application as the nanocomposite shows better thermal stability. The characterization has been done using XRD, FT-IR, FESEM, and UV–Vis for their structure, surface morphology, respectively, along with TGA and two-probe method used for checking thermal stability, and DC electrical conductance and dielectric behavior of the electrical phenomena of sample. The analysis of XRD demonstrates that crystallinity of nanocomposites is the same as that of the polymer, even though interaction between conducting Ppy and V2O5 is present as evident from FT-IR spectroscopy. A variation in bandgap, in comparison with Ppy, is observed when V2O5 is added into it. The microstructural study of nanocomposites shows encapsulation of V2O5 particles in Ppy matrix with changes in morphology with increase in doping. Conductance results show that electrical conductivity of Ppy decayed on adding V2O5. It has also been found that addition of V2O5 in Ppy has noticeable effect on the dielectric properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    R. Gangopadhyay, A. De, Chem. Mater. 12, 608 (2000)

    Article  Google Scholar 

  2. 2.

    T.J. Rivers, T.W. Hudson, C.E. Schmidt, Adv. Funct. Mater. 12, 33 (2002)

    Article  Google Scholar 

  3. 3.

    N.K. Guimard, N. Gomez, C.E. Schmidt, Prog. Polym. Sci. 32, 876 (2007)

    Article  Google Scholar 

  4. 4.

    H. Nguyen-Cong, V. de la Garza Guadarrama, J.L. Gautier, P. Chartier, Electrochim. Acta. 48, 2389 (2003)

    Article  Google Scholar 

  5. 5.

    R. Gangopadhyay, A. De, Eur. Polym. J. 35, 1985 (1999)

    Article  Google Scholar 

  6. 6.

    M.-K. Song, Y.-T. Kim, B.-S. Kim, J. Kim, K. Char, H.-W. Rhee, Synth. Met. 141, 315 (2004)

    Article  Google Scholar 

  7. 7.

    D.A. Makeiff, T. Huber, Synth. Met. 156, 497 (2006)

    Article  Google Scholar 

  8. 8.

    A. Bhattacharya, D.C. Mukherjee, J.M. Gohil, Y. Kumar, S. Kundu, Desalination 225, 366 (2008)

    Article  Google Scholar 

  9. 9.

    Q. Gao, Y. Wang, D. He, C. Ju, L. Gao, M. Fu, J. Nanosci. Nanotechnol. 11, 9836 (2011)

    Article  Google Scholar 

  10. 10.

    H. Liang, X. Li, Appl. Catal. B Environ. 86, 8 (2009)

    Article  Google Scholar 

  11. 11.

    G. Chakraborty, K. Gupta, A.K. Meikap, R. Babu, W.J. Blau, Solid State Commun. 152, 13 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    F. Huguenin, R.M. Torresi, J. Phys. Chem. C 112, 2202 (2008)

    Article  Google Scholar 

  13. 13.

    C.A. Ferreira, S.C. Domenech, P.C. Lacaze, J. Appl. Electrochem. 31, 49 (2001)

    Article  Google Scholar 

  14. 14.

    F. Han, D. Li, W.-C. Li, C. Lei, Q. Sun, A.-H. Lu, Adv. Funct. Mater. 23, 1692 (2013)

    Article  Google Scholar 

  15. 15.

    S. Mishra, H. Pandey, P. Yogi, S.K. Saxena, S. Roy, P.R. Sagdeo, R. Kumar, Opt. Mater. 66, 65 (2017)

    ADS  Article  Google Scholar 

  16. 16.

    A.-M. Cao, J.-S. Hu, H.-P. Liang, L.-J. Wan, Angew. Chem. Int. Ed Engl. 44, 4391 (2005)

    Article  Google Scholar 

  17. 17.

    T. Chirayil, P.Y. Zavalij, M.S. Whittingham, Chem. Mater. 10, 2629 (1998)

    Article  Google Scholar 

  18. 18.

    A. Sellinger, P.M. Weiss, A. Nguyen, Y. Lu, R.A. Assink, W. Gong, C.J. Brinker, Nature 394, 256 (1998)

    ADS  Article  Google Scholar 

  19. 19.

    F. Huguenin, E.M. Girotto, R.M. Torresi, D.A. Buttry, J. Electroanal. Chem. 536, 37 (2002)

    Article  Google Scholar 

  20. 20.

    C. Piewnuan, J. Wootthikanokkhan, P. Ngaotrakanwiwat, V. Meeyoo, S. Chiarakorn, Superlattices Microstruct. 75, 105 (2014)

    ADS  Article  Google Scholar 

  21. 21.

    H.J. Kharat, K.P. Kakde, P.A. Savale, K. Datta, P. Ghosh, M.D. Shirsat, Polym. Adv. Technol. 18, 397 (2007)

    Article  Google Scholar 

  22. 22.

    K. Arora, A. Chaubey, R. Singhal, R.P. Singh, M.K. Pandey, S.B. Samanta, B.D. Malhotra, S. Chand, Biosens. Bioelectron. 21, 1777 (2006)

    Article  Google Scholar 

  23. 23.

    C. Zhang, Q. Li, J. Li, Synth. Met. 160, 1699 (2010)

    Article  Google Scholar 

  24. 24.

    R. Partch, S.G. Gangolli, E. Matijević, W. Cal, S. Arajs, J. Colloid Interface Sci. 144, 27 (1991)

    ADS  Article  Google Scholar 

  25. 25.

    J. Ouyang, Y. Li, Polymer 38, 3997 (1997)

    Article  Google Scholar 

  26. 26.

    S. Ebrahimiasl, A. Zakaria, A. Kassim, S.N. Basri, Int. J. Nanomed. 10, 217 (2014)

    Article  Google Scholar 

  27. 27.

    B. Li, Y. Xu, G. Rong, M. Jing, Y. Xie, Nanotechnology 17, 2560 (2006)

    ADS  Article  Google Scholar 

  28. 28.

    H. Shiigi, M. Kishimoto, H. Yakabe, B. Deore, T. Nagaoka, Anal. Sci. 18, 41 (2002)

    Article  Google Scholar 

  29. 29.

    A.R. Sadrolhosseini, S. Abdul Rashid, A.S.M. Noor, A. Kharazmi, H.N. Lim, M.A. Mahdi, J. Nanomater. 2016, e1949042 (2016)

    Google Scholar 

  30. 30.

    L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang, W. Huang, S. Wu, Synth. Met. 156, 1078 (2006)

    Article  Google Scholar 

  31. 31.

    K. Gupta, P.C. Jana, A.K. Meikap, Synth. Met. 160, 1566 (2010)

    Article  Google Scholar 

  32. 32.

    P. Mavinakuli, S. Wei, Q. Wang, A.B. Karki, S. Dhage, Z. Wang, D.P. Young, Z. Guo, J. Phys. Chem. C 114, 3874 (2010)

    Article  Google Scholar 

  33. 33.

    Z. Guo, K. Shin, A.B. Karki, D.P. Young, R.B. Kaner, H.T. Hahn, J. Nanoparticle Res 11, 1441 (2009)

    ADS  Article  Google Scholar 

  34. 34.

    F. Kanwal, S.A. Siddiqi, A. Batool, M. Imran, W. Mushtaq, T. Jamil, Synth. Met. 161, 335 (2011)

    Article  Google Scholar 

  35. 35.

    A. Batool, F. Kanwal, M. Imran, T. Jamil, S.A. Siddiqi, Synth. Met. 161, 2753 (2012)

    Article  Google Scholar 

  36. 36.

    J.-C. Xu, W.-M. Liu, H.-L. Li, Mater. Sci. Eng. C 25, 444 (2005)

    Article  Google Scholar 

  37. 37.

    I. Haldar, A. Nayak, J. Nanosci. Nanotechnol. 17, 4658 (2017)

    Article  Google Scholar 

  38. 38.

    K. Ahmed, F. Kanwal, S.M. Ramay, A. Mahmood, S. Atiq, Y.S. Al-Zaghayer, Adv. Condens. Matter Phys. 2016, e4793434 (2016)

    Google Scholar 

Download references


Authors are thankful to the Department of Science and Technology (DST) Project (No. SB/S2/CMP-012-2014) for the financial support and also grateful to SIC, Indian Institute of Technology Indore for the instrumental facility.

Author information



Corresponding author

Correspondence to Rajesh Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 107 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Mishra, S., Yogi, P. et al. Polypyrrole–vanadium oxide nanocomposite: polymer dominates crystallanity and oxide dominates conductivity. Appl. Phys. A 124, 53 (2018). https://doi.org/10.1007/s00339-017-1472-6

Download citation