Skip to main content
Log in

Thermal and electrical conductivities of epoxy resin-based composites incorporated with carbon nanotubes and TiO2 for a thermoelectric application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For a thermoelectric application, the thermal conductivity, electrical conductivity and figure of merit of epoxy resin-based composites incorporated with carbon nanotubes and TiO2 are investigated in this paper. First, the composite is prepared with a solution blending method. Then, the structure, thermal and electrical conductivities are characterized with experimental methods. Finally, the thermal conductivity, electrical conductivity and figure of merit are discussed. Results turn out that with an increasing content of carbon nanotube fillers, there are different changing trends of thermal and electrical conductivities because of large difference between thermal and electrical contact resistances in the composite. With the increasing filler content, the electrical conductivity increases exponentially while thermal conductivity saturates to be a constant value. Due to the large ratio of electrical to thermal conductivities, the figure of merit with 8 wt% of fillers is more than 50 times larger than that with a low content of fillers. Our results confirm that the recently proposed concept of ‘electron-percolation thermal-insulator’ is a feasible way to enhance the figure of merit of a polymer composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  2. D. Zhao, G. Tan, Appl. Therm. Eng. 66, 15 (2014)

    Article  ADS  Google Scholar 

  3. R. Yang, G. Chen, Phys. Rev. B 69, 195316 (2004)

    Article  ADS  Google Scholar 

  4. T.H. Wang, Q.H. Wang, C. Leng, X.D. Wang, Appl. Energy 154, 1 (2015)

    Article  Google Scholar 

  5. J.H. Meng, X.X. Zhang, X.D. Wang, Energy 71, 367 (2014)

    Article  Google Scholar 

  6. H. Lv, X.D. Wang, T.H. Wang, C.H. Cheng, Appl. Energy 164, 501 (2016)

    Article  Google Scholar 

  7. T. Ma, J. Pandit, S.V. Ekkad, S.T. Huxtable, Q. Wang, Energy 84, 695 (2015)

    Article  Google Scholar 

  8. G. Tan, D. Zhao, Appl. Therm. Eng. 86, 187 (2015)

    Article  Google Scholar 

  9. G.S. Nolas, D.T. Morelli, T.M. Tritt, Annu. Rev. Mater. Sci. 29, 89 (1999)

    Article  ADS  Google Scholar 

  10. T. Takabatake, K. Suekuni, T. Nakayama, E. Kaneshita, Rev. Mod. Phys. 86, 669 (2014)

    Article  ADS  Google Scholar 

  11. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413 597 (2001)

    Article  ADS  Google Scholar 

  12. Y. Wang, J. Liu, J. Zhou, R. Yang, J. Phys. Chem. C 117, 24716 (2013)

    Article  Google Scholar 

  13. Z.Z. Lin, C.L. Huang, Z. Huang, J. Nanosci. Nanotech. 17 1 (2017). https://doi.org/10.1166/jnn.2017.14681

    Article  Google Scholar 

  14. Z.Z. Lin, C.L. Huang, W.K. Zhen, Y.H. Feng, X.X. Zhang, G. Wang, Nanoscale Res. Lett. 12, 189 (2017)

    Article  ADS  Google Scholar 

  15. C.K. Mai, J. Liu, C.M. Evans, R.A. Segalman, M.L. Chabinyc, D.G. Cahill, G.C. Bazan, Macromolecules 49, 4957 (2016)

    Article  ADS  Google Scholar 

  16. C.L. Huang, X. Qian, R.G. Yang, EPL 117, 24001 (2017)

    Article  ADS  Google Scholar 

  17. B. Liu, T. Lu, B. Wang, J. Liu, T. Nakayama, J. Zhou, B. Li, Appl. Phys. Lett. 110, 113102 (2017)

    Article  ADS  Google Scholar 

  18. M. He, W. Han, J. Ge, Y. Yang, F. Qiu, Z. Lin, Energy Environ. Sci. 4, 2894 (2011)

    Article  Google Scholar 

  19. Z.L. Wang, Adv. Mater. 24, 280 (2012)

    Article  Google Scholar 

  20. Z.D. Han, A. Fina, Prog. Polym. Sci. 36, 914 (2011)

    Article  Google Scholar 

  21. A.P. Singh, B.K. Gupta, M. Mishra, A. Chandra, R. Mathur, S. Dhawan, Carbon 56, 86 (2013)

    Article  Google Scholar 

  22. H. Xu, C. Wang, Y. Song, J. Zhu, Y. Xu, J. Yan, Y.X. Song, H.M. Li, Chem. Eng. J. 241, 35 (2014)

    Article  Google Scholar 

  23. R.F. Zhang, D.Z. Guo, G.M. Zhang, Appl. Surf. Sci. 426, 763 (2017)

    Article  ADS  Google Scholar 

  24. C.L. Huang, Z.Z. Lin, Y.H. Feng, X.X. Zhang, G. Wang, Eur. Phys. J. Plus 130, 239 (2015)

    Article  Google Scholar 

  25. D. Zhao, X. Qian, X. Gu, S.A. Jajja, R. Yang, J. Electron. Packag. 138, 040802 (2016)

    Article  Google Scholar 

  26. Z.Z. Lin, C.L. Huang, W.K. Zhen, Z. Huang, Appl. Therm. Eng. 119, 425 (2017)

    Article  Google Scholar 

  27. M.R. Zakaria, M.H.A. Kudus, H.M. Akil, M.Z.M. Thirmizir, Compos. B Eng. 119, 57 (2017)

    Article  Google Scholar 

  28. J. Huang, M. Gao, T. Pan, Y. Zhang, Y. Lin, Compos. Sci. Technol. 95, 16 (2014)

    Article  Google Scholar 

  29. C.W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, J. Appl. Phys. 81, 6692 (1997)

    Article  ADS  Google Scholar 

  30. D.J. Yang, Q. Zhang, G. Chen, S.F. Yoon, J. Ahn, S.G. Wang, Q. Zhou, Q. Wang, J.Q. Li, Phys. Rev. B 66, 165440 (2002)

    Article  ADS  Google Scholar 

  31. D.L. Feng, Y.H. Feng, Y. Chen, W. Li, X.X. Zhang, Chin. Phys. B 22, 016501 (2013)

    Article  ADS  Google Scholar 

  32. W. Li, Y.H. Feng, J. Peng, X.X. Zhang, ASME J. Heat Transf. 134, 092401 (2012)

    Article  Google Scholar 

  33. W.K. Zhen, Z.Z. Lin, C.L. Huang, Modified Maxwell model for thermal conductivity. Prediction of nanocomposites with effect of aggregation. Chin. Phys. B 26, 114401 (2017)

    Article  ADS  Google Scholar 

  34. X. Li, X. Fan, Y. Zhu, J. Li, J.M. Adams, S. Shen, H. Li, Comp. Mater. Sci. 63, 207 (2012)

    Article  Google Scholar 

  35. C.W. Nan, G. Liu, Y. Lin, M. Li, Appl. Phys. Lett. 85, 3549 (2004)

    Article  ADS  Google Scholar 

  36. Y. Hwang, M. Kim, J. Kim, Compos. Part A Appl. Sci. Manuf. 55, 195 (2013)

    Article  Google Scholar 

  37. M. Foygel, R.D. Morris, D. Anez, S. French, V.L. Sobolev, Phys. Rev. B 71, 104201 (2005)

    Article  ADS  Google Scholar 

  38. T. Nakayama, K. Yakubo, R.L. Orbach, Rev. Mod. Phys. 66, 381 (1994)

    Article  ADS  Google Scholar 

  39. I. Balberg, N. Binenbaum, Phys. Rev. B 28, 3799 (1983)

    Article  ADS  Google Scholar 

  40. R.S. Prasher, X.J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri, P. Keblinski, Phys. Rev. Lett. 102, 105901 (2009)

    Article  ADS  Google Scholar 

  41. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris, Appl. Phys. Lett. 73, 2447 (1998)

    Article  ADS  Google Scholar 

  42. A.B. Kaiser, Phys. Rev. B 40 2806 (1989)

    Article  ADS  Google Scholar 

  43. C. Meng, C. Liu, S. Fan, Adv. Mater. 22, 535 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Fundamental Research Funds for the Central Universities (2015XKMS062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congliang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Zhen, W., Huang, Z. et al. Thermal and electrical conductivities of epoxy resin-based composites incorporated with carbon nanotubes and TiO2 for a thermoelectric application. Appl. Phys. A 124, 38 (2018). https://doi.org/10.1007/s00339-017-1467-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1467-3

Navigation