Skip to main content
Log in

High-fidelity large area nano-patterning of silicon with femtosecond light sheet

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We employ a femtosecond light sheet generated by a cylindrical lens to rapidly produce high-fidelity nano-structures over large area on silicon surface. The Fourier analysis of electron microscopy images of the laser-induced surface structures reveals sharp peaks indicating good homogeneity. We observed an emergence of second-order spatial periodicity on increasing the scan speed. Our reliable approach may rapidly nano-pattern curved solid surfaces and tiny objects for diverse potential applications in optical devices, structural coloring, plasmonic substrates and in high-harmonic generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Baldacchini, J.E. Carey, M. Zhou, E. Mazur, Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser. Langmuir 22, 4917 (2006)

    Article  Google Scholar 

  2. M. Birnbaum, Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36, 3688 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  3. H.M. van Driel, J.E. Sipe, J.F. Young, Laser-induced periodic surface structure on solids: a universal phenomenon. Phys. Rev. Lett. 49, 1955 (1982)

    Article  ADS  Google Scholar 

  4. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, C. Fotakis, Tailoring the wetting response of silicon surfaces via fs laser structuring. Appl. Phys. A 93, 819 (2008)

    Article  ADS  Google Scholar 

  5. N. Koufaki, A. Ranella, K.E. Aifantis, M. Barberoglou, S. Psycharakis, C. Fotakis, E. Stratakis, Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers. Biofabrication 3, 045004 (2011)

    Article  ADS  Google Scholar 

  6. Y. Sato, M. Tsukamoto, T. Shinonaga, T. Kawa, Femtosecond laser-induced periodic nanostructure creation on PET surface for controlling of cell spreading. Appl. Phys. A 122(3), 184 (2016)

    Article  ADS  Google Scholar 

  7. V. Stankevi, G. Raiukaitis, F. Bragheri, X. Wang, E.G. Gamaly, R. Osellame, S. Juodkazis, Laser printed nano-gratings: orientation and period peculiarities. Sci. Rep. 7, 39989 (2017)

    Article  ADS  Google Scholar 

  8. Z. Liu, J. Siegel, M.G. Lechuga, T. Epicier, Y. Lefkir, S. Reynaud, M. Bugnet, F. Vocanson, J. Solis, G. Vitrant, N. Destouches, Three-dimensional self-organization in nanocomposite layered systems by ultrafast laser pulses. ACS Nano 11, 5031 (2017)

    Article  Google Scholar 

  9. A.Y. Vorobyev, V.S. Makin, C. Guo, Brighter light sources from black metal: significant increase in emission efficiency of incandescent light sources. Phys. Rev. Lett. 102, 234301 (2009)

    Article  ADS  Google Scholar 

  10. J. Ouyang, W. Perrie, O.J. Allegre, T. Heil, Y. Jin, E. Fearon, D. Eckford, S.P. Edwardson, G. Dearden, Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring. Opt. Express 23, 12562 (2015)

    Article  ADS  Google Scholar 

  11. Q. Zhan, J. Leger, Focus shaping using cylindrical vector beams. Opt. Express 10, 324 (2002)

    Article  ADS  Google Scholar 

  12. K.K. Anoop, A. Rubano, R. Fittipaldi, X. Wang, D. Paparo, A. Vecchione, L. Marrucci, R. Bruzzese, S. Amoruso, Femtosecond laser surface structuring of silicon using optical vortex beams generated by a q-plate. Appl. Phys. Lett. 104(24), 241604 (2014)

    Article  ADS  Google Scholar 

  13. E. Skoulas, A. Manousaki, C. Fotakis, E. Stratakis, Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci. Rep. 7, 45114 (2017)

    Article  ADS  Google Scholar 

  14. F.A. Müller, C. Kunz, S. Gräf, Bio-inspired functional surfaces based on laser-induced periodic surface structures. Materials 9(6), 476 (2016)

    Article  ADS  Google Scholar 

  15. J. Bonse, J. Kruger, Femtosecond laser-induced periodic surface structures. J. Laser Appl. 24, 042006 (2012)

    Article  ADS  Google Scholar 

  16. A.Y. Vorobyev, C. Guo, Colorizing metals with femtosecond laser pulses. Appl. Phys. Lett. 92, 0914414 (2008)

    Article  Google Scholar 

  17. M.E. Fermann, A. Galvanauskas, G. Sucha (eds.), Ultrafast Lasers: Technology and Applications, vol. 80 (CRC Press, Boca Raton, 2002)

    Google Scholar 

  18. A. Borowiec, H.K. Haugen, Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82, 4462 (2003)

    Article  ADS  Google Scholar 

  19. M. Gedvilas, J. Miksys, G. Raciukaitis, Flexible periodical micro and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation. RSC Adv. 5, 75075 (2015)

    Article  Google Scholar 

  20. A.M. Kietzig, S. Hatzikiriakos, P. Englezos, Patterned superhydrophobic metallic surfaces. Langmuir 25, 4821 (2009)

    Article  Google Scholar 

  21. M. Ardron, N. Weston, D. Hand, A practical technique for the generation of highly uniform LIPSS. Appl. Surf. Sci. 313, 123 (2014)

    Article  Google Scholar 

  22. S.K. Das, K. Dasari, A. Rosenfeld, R. Grunwald, Extended-area nanostructuring of \(\text{ TiO }_2\) with femtosecond laser pulses at 400 nm using a line focus. Nanotechnology 21(15), 155302 (2010)

    Article  ADS  Google Scholar 

  23. S. Hohm, M. Herzlieb, A. Rosenfeld, J. Kruger, J. Bonse, Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation. Opt. Express 23, 61 (2015)

    Article  ADS  Google Scholar 

  24. O. Varlamova, C. Martens, M. Ratzke, J. Reif, Genesis of femtosecond-induced nanostructures on solid surfaces. Appl. Opt. 53(31), I10–I15 (2014)

    Article  Google Scholar 

  25. J. Bonse, S. Hohm, S.V. Kirner, A. Rosenfeld, J. Kruger, Laser-induced periodic surface structures a scientific evergreen. IEEE J. Sel. Top. Quantum Electron. 23, 1 (2017)

    Article  Google Scholar 

  26. J. Reif, F. Costache, M. Henyk, S. Pandelov, Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci. 197, 891 (2002)

    Article  ADS  Google Scholar 

  27. J. Bonse, J. Kruger, Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon. J. Appl. Phys. 108, 034903 (2010)

    Article  ADS  Google Scholar 

  28. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure. I. Theory. Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  29. F. Garrelie, J.P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, O. Parriaux, Evidence of surface plasmon resonance in ultrafast laser-induced ripples. Opt. Express 19, 9035 (2011)

    Article  ADS  Google Scholar 

  30. R. Buividas, M. Mikutis, S. Juodkazis, Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog. Quantum Electron. 38(3), 119–156 (2014)

    Article  ADS  Google Scholar 

  31. L. Wang, B.B. Xu, X.W. Cao, Q.K. Li, W.J. Tian, Q.D. Chen, S. Juodkazis, H.B. Sun, Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica 4(6), 637–642 (2017)

    Article  Google Scholar 

  32. T.J.Y. Derrien, T.E. Itina, R. Torres, T. Sarnet, M. Sentis, Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon. J. Appl. Phys. 114, 083104 (2013)

    Article  ADS  Google Scholar 

  33. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70, 1 (2007)

    Article  ADS  Google Scholar 

  34. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 247405 (2003)

    Article  ADS  Google Scholar 

  35. L. Wang, Q.D. Chen, X.W. Cao, R. Buividas, X.W. Wang, S. Juodkazis, H.B. Sun, Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl. 6, e17112 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We thank central facility of IISER Mohali for SEM imaging, DST and Max Planck Society for financial support. KP would also like to acknowledge A. Devi for showing initial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal P. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidhu, M.S., Munjal, P. & Singh, K.P. High-fidelity large area nano-patterning of silicon with femtosecond light sheet. Appl. Phys. A 124, 46 (2018). https://doi.org/10.1007/s00339-017-1459-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1459-3

Navigation