Skip to main content
Log in

Exploring structural, electronic and thermo-elastic properties of metallic AMoO3 (A = Pb, Ba, Sr) molybdates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural, electronic and thermodynamic properties of AMoO3 (A = Pb, Ba and Sr) molybdates have been investigated by deploying density functional theory. Computed elastic constants and corresponding properties is the first comparative report on AMoO3.The elastic properties match well with the available literature. Results have shown that the studied compounds exhibit stable anti-ferromagnetic, ductile cubic phase along with metallic attributes. Electron spin density contours and DOS were used to shed light on surface morphology of metal-oxide-metal type of mixed bonding. By analyzing enthalpy of formations for AMoO3, SrMoO3 has found to be the most stable than Pb and Ba molybdates. Our results are predictions for future experimentations to develop electronic devices based on studied compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 4
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Scott, Applications of modern ferroelectrics. Science 315, 954–959 (2007).

    Article  ADS  Google Scholar 

  2. E. Cross, Nature 432, 24–25 (2004)

    Article  ADS  Google Scholar 

  3. T. Schneider, D. Leduc, J. Cardin, C. Lupi, N. Barreau, H. Gundel, Opt. Mater. 29, 1871–1877 (2007)

    Article  ADS  Google Scholar 

  4. R. Watton, Ferroelectrics 91, 87–108 (1989)

    Article  Google Scholar 

  5. H. Takatsu, O. Hernandez, W. Yoshimune, C. Prestipino, T. Yamamoto, C. Tassel, Y. Kobayashi, D. Batuk, Y. Shibata, A.M. Abakumov, Phys. Rev. B 95, 155105 (2017)

    Article  ADS  Google Scholar 

  6. R. Scholder, W. Klemm, Angewandte chemie 66, 461–467 (1954)

    Article  Google Scholar 

  7. L. Brixner, J. Inorg. Nucl. Chem. 14, 225–230 (1960)

    Article  Google Scholar 

  8. V. Nassif, R.E. Carbonio, J.A. Alonso, J. Solid State Chem. 146, 266–270 (1999)

    Article  ADS  Google Scholar 

  9. P. O’Hare, J. Chem. Thermodyn. 6, 425–434 (1974)

    Article  Google Scholar 

  10. S. Dash, Z. Singh, R. Prasad, D. Sood, J. Nucl. Mater. 207, 350–352 (1993)

    Article  ADS  Google Scholar 

  11. H. Mizoguchi, K. Fukumi, N. Kitamura, T. Takeuchi, J. Hayakawa, H. Yamanaka, H. Yanagi, H. Hosono, H. Kawazoe, J. Appl. Phys. 85, 6502–6505 (1999)

    Article  ADS  Google Scholar 

  12. K. Kurosaki, T. Oyama, H. Muta, M. Uno, S. Yamanaka, J. Alloys Compd. 372, 65–69 (2004)

    Article  Google Scholar 

  13. J. Kubo, W. Ueda, Mater. Res. Bull. 44, 906–912 (2009)

    Article  Google Scholar 

  14. H. Mizoguchi, N. Kitamura, K. Fukumi, T. Mihara, J. Nishii, M. Nakamura, N. Kikuchi, H. Hosono, H. Kawazoe, J. Appl. Phys. 87, 4617–4619 (2000)

    Article  ADS  Google Scholar 

  15. H. Wang, G. Yang, D. Cui, H. Lu, T. Zhao, F. Chen, Y. Zhou, Z. Chen, Y. Lan, Y. Ding, J. Vac. Sci. Technol. Surf. Films 19, 930–933 (2001)

    Article  ADS  Google Scholar 

  16. H. Wang, D. Cui, Y. Zhou, Z. Chen, F. Chen, T. Zhao, H. Lu, G. Yang, M. Xu, Y. Lan, Journal of crystal growth 226, 261–266 (2001)

    Article  ADS  Google Scholar 

  17. S. Zhang, Y. Sun, B. Zhao, X. Zhu, W. Song, Phys. Status Solidi. B 243, 1331–1336 (2006)

    Article  ADS  Google Scholar 

  18. B. Zhao, Y. Sun, S. Zhang, W. Song, J. Dai, J. Appl. Phys. 102, 113903 (2007)

    Article  ADS  Google Scholar 

  19. A. Radetinac, A. Mani, S. Melnyk, M. Nikfalazar, J. Ziegler, Y. Zheng, R. Jakoby, L. Alff, P. Komissinskiy, Appl. Phys. Lett. 105, 114108 (2014)

    Article  ADS  Google Scholar 

  20. M. Sahu, K. Krishnan, M. Saxena, S. Dash, J. Nucl. Mater. 457, 29–35 (2015)

    Article  ADS  Google Scholar 

  21. H. Hopper, J. Le, J. Cheng, T. Weller, R. Marschall, J. Bloh, D. Macphee, A. Folli, J. Solid State Chem. 234, 87–92 (2016)

    Article  ADS  Google Scholar 

  22. O.K. Andersen, Physical Review B 12, 3060 (1975)

    Article  ADS  Google Scholar 

  23. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  24. D.J. Singh, L. Nordstrom, Planewaves, Pseudopotentials, and the LAPW Method, Springer, Berlin (2006)

  25. K. Schwarz, P. Blaha, Comput. Mater. Sci. 28(2), 259–273 (2003)

    Article  Google Scholar 

  26. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  27. F. Murnaghan, Proc. Natl. Acad. Sci. 30, 244–247, (1944)

    Google Scholar 

  28. S. Tariq, A. Ahmed, S. Saad, S. Tariq, AIP Adv. 5, 077111 (2015)

    Article  ADS  Google Scholar 

  29. S. Nadeem, S. Tariq, M.I. Jamil, E. Ahmad, S.S. Gilani, K.S. Munawar, J. Theor. Comput. Chem. 15, 1650044 (2016)

    Article  Google Scholar 

  30. V.M. Goldschmidt, Naturwissenschaften 14, 477–485 (1926)

    Article  ADS  Google Scholar 

  31. A. Kokalj, Comput. Mater. Sci. 28, 155–168 (2003)

    Article  Google Scholar 

  32. B. Karki, G. Ackland, J. Crain, J. Phys. Condens. Matter. 9, 8579 (1997)

    Article  ADS  Google Scholar 

  33. W. Voigt, Textbook of Crystal Physics (BB Teubner, Leipzig, 1928), p. 2

    Google Scholar 

  34. A. Reuss, Z. Angew. Math. Mech 9, 49–58 (1929)

    Article  Google Scholar 

  35. R. Hill, Proc. Phys. Soc. A, 65, 349, (1952)

    Article  ADS  Google Scholar 

  36. Z. Sun, S. Li, R. Ahuja, J.M. Schneider, Solid State Comm. 129, 589–592 (2004)

    Article  ADS  Google Scholar 

  37. Y. Tian, B. Xu, Z. Zhao, Int. J. Refract. Metals Hard Mater. 33, 93–106 (2012)

    Article  Google Scholar 

  38. R. Johnson, Phys. Rev. B 37, 3924 (1988)

    Article  ADS  Google Scholar 

  39. D. Pettifor, Mater. Sci. Technol. 8, 345–349 (1992)

    Article  Google Scholar 

  40. Y. Ciftci, K. Colakoglu, E. Deligoz, H. Ozisik, Mater. Chem. Phys. 108, 120–123 (2008)

    Article  Google Scholar 

  41. Y.-J. Hao, X.-R. Chen, H.-L. Cui, Y.-L. Bai, Phys. B 382, 118–122 (2006)

    Article  ADS  Google Scholar 

  42. E. Screiber, O. Anderson, N. Soga, Elastic Constants and Their Measurements, McGrawHill, New York, (1973)

    Google Scholar 

  43. M. Fine, L. Brown, H. Marcus, Scr. Metall. 18, 951–956 (1984)

    Article  Google Scholar 

  44. D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46, 6131 (1992)

    Article  ADS  Google Scholar 

  45. C. Barrett, L. Meyer, J. Wasserman 47, 592–597 (1967)

    Google Scholar 

  46. S.A. Dar, V. Srivastava, U.K. Sakalle, J. Electron. Mater., 1–8 (2017)

  47. A. Verma, A. Kumar, J. Alloy. Compd. 541, 210–214 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Shahid Mahmood Ramay would like to extend his sincere appreciation to the Deanship of Scientific Research at King Saud University for funding under Research Group (No. RG 1435-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Tariq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, S., Jamil, M.I., Sharif, A. et al. Exploring structural, electronic and thermo-elastic properties of metallic AMoO3 (A = Pb, Ba, Sr) molybdates. Appl. Phys. A 124, 44 (2018). https://doi.org/10.1007/s00339-017-1452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1452-x

Keywords

Navigation