Skip to main content
Log in

Structural and electrical investigations of MBE-grown SiGe nanoislands

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

SiGe nanoislands were grown by Molecular Beam Epitaxy (MBE) method on Si (100) substrates with comparative growth parameters such as annealing temperature, top Ge content and layer-by-layer annealing (LBLA). XRD and Raman data suggest that annealing temperature, top Ge content and layer-by-layer annealing (LBLA) can overall give a control not only over the amorphous content but also over yielding the strained Ge layer formation in addition to mostly Ge crystallites. Depending on the layer design and growth conditions, size of the crystallites was observed to be changed. Four Point Probe (FPP) Method via Semiconductor Analyzer shows that 100 °C rise in annealing temperature of the samples with Si0.25Ge0.75 top layers caused rougher islands with vacancies which further resulted in the formation of laterally higher resistive thin film sheets. However, vertically performed I-AFM analysis produced higher I–V values which suggest that the vertical and horizantal conductance mechanisms appear to be different. Ge top-layered samples gained greater crystalline structure and better surface conductivity where LBLA resulted in the formation of Ge nucleation and tight 2D stacking resulting in enhanced current values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.W. Bedell, A. Khakifirooz, D.K. Sadana, Strain scaling for CMOS. MRS Bull. 39, 131–137 (2014). https://doi.org/10.1557/mrs.2014.5

    Article  Google Scholar 

  2. W. Hu, B. Cheng, C. Xue, S. Su, H. Xue, Y. Zuo et al., Ge-on-Si for Si-based integrated materials and photonic devices. Front Optoelectron. 5, 41–50 (2012). https://doi.org/10.1007/s12200-012-0200-2

    Article  Google Scholar 

  3. M. Klemenc, T. Meyer, H. von Kanel, Si surface band-gap shift on top of buried Ge quantum dots. Appl. Surf. Sci. 166, 268–272 (2000). https://doi.org/10.1016/S0169-4332(00)00404-9

    Article  ADS  Google Scholar 

  4. J. Michel, J. Liu, L.C. Kimerling, High-performance Ge-on-Si photodetectors. Nat. Photonics 4, 527–534 (2010). https://doi.org/10.1038/nphoton.2010.157

    Article  ADS  Google Scholar 

  5. M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie, A. Lochtefeld, Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 97, 11101 (2005). https://doi.org/10.1063/1.1819976

    Article  ADS  Google Scholar 

  6. K.L. Wang, D. Cha, J. Liu, C. Chen, Ge/Si self-assembled quantum dots and their optoelectronic device applications. Proc. IEEE 95, 1866–1883 (2007). https://doi.org/10.1109/JPROC.2007.900971

    Article  Google Scholar 

  7. K. Ma, R. Chen, D.A.B. Miller, J.S. Harris, Novel on-chip fully monolithic integration of GaAs devices with completely fabricated Si CMOS circuits. IEEE J. Sel. Top Quantum Electron 11, 1278–1283 (2005). https://doi.org/10.1109/JSTQE.2005.860991

    Article  Google Scholar 

  8. R. Oshima, Y. Watanabe, M. Yamanaka, H. Kawanami, I. Sakamoto, K. Matsubara et al., High-quality SiGe films grown with compositionally graded buffer layers for solar cell applications. J. Cryst. Growth 378, 226–229 (2013). https://doi.org/10.1016/j.jcrysgro.2012.12.154

    Article  ADS  Google Scholar 

  9. P. Tomasini, V. Machkaoutsan, S.G. Thomas, Analysis of silicon germanium vapor phase epitaxy kinetics. Thin Solid Films 518, S12–S17 (2010). https://doi.org/10.1016/j.tsf.2009.10.046

    Article  ADS  Google Scholar 

  10. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper et al., Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy. Appl. Phys. Lett. 98, 61108 (2011). https://doi.org/10.1063/1.3555439

    Article  Google Scholar 

  11. V. Sorianello, L. Colace, M. Nardone, G. Assanto, Thermally evaporated single-crystal Germanium on Silicon. Thin Solid Films 519, 8037–8040 (2011). https://doi.org/10.1016/j.tsf.2011.06.023

    Article  ADS  Google Scholar 

  12. D.-J. Xue, J.-J. Wang, Y.-Q. Wang, S. Xin, Y.-G. Guo, L.-J. Wan, Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. Adv. Mater. 23, 3704–3707 (2011). https://doi.org/10.1002/adma.201101436

    Article  Google Scholar 

  13. J.P. Sun, G.I. Haddad, P. Mazumder, J.N. Schulman, Resonant tunneling diodes: models and properties. Proc. IEEE 86, 641–660 (1998). https://doi.org/10.1109/5.663541

    Article  Google Scholar 

  14. R. Soref, The past, present, and future of silicon photonics. IEEE J. Sel. Top Quantum Electron 12, 1678–1687 (2006). https://doi.org/10.1109/JSTQE.2006.883151

    Article  Google Scholar 

  15. I.J. Kuzma-Filipek, F. Duerinckx, E. Van Kerschaver, K. Van Nieuwenhuysen, G. Beaucarne, J. Poortmans, Chirped porous silicon reflectors for thin-film epitaxial silicon solar cells. J. Appl. Phys. 104, 73529 (2008). https://doi.org/10.1063/1.2993753

    Article  Google Scholar 

  16. S.P. Tobin, S.M. Vernon, C. Bajgar, V.E. Haven, L.M. Geoffroy, D.R. Lillington, High-efficiency GaAs/Ge monolithic tandem solar cells. IEEE Electron Device Lett. 9, 256–258 (1988). https://doi.org/10.1109/55.708

    Article  ADS  Google Scholar 

  17. C.S.C. Barrett, A.G. Lind, X. Bao, Z. Ye, K.Y. Ban, P. Martin et al., Quantitative correlation of interfacial contamination and antiphase domain boundary density in GaAs on Si(100). J. Mater. Sci. 51, 449–456 (2016). https://doi.org/10.1007/s10853-015-9334-0

    Article  ADS  Google Scholar 

  18. O. Rubel, S.D. Baranovskii, Formation energies of antiphase boundaries in GaAs and GaP: an ab initio study. Int. J. Mol. Sci. 10, 5104–5114 (2009). https://doi.org/10.3390/ijms10125104

    Article  Google Scholar 

  19. K. Eberl, O. Schmidt, R. Duschl, O. Kienzle, E. Ernst, Y. Rau, Self-assembling SiGe and SiGeC nanostructures for light emitters and tunneling diodes. Thin Solid Films 369, 33–38 (2000). https://doi.org/10.1016/S0040-6090(00)00830-0

    Article  ADS  Google Scholar 

  20. J. Stangl, V. Holý, G. Bauer, Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 76, 725–783 (2004). https://doi.org/10.1103/RevModPhys.76.725

    Article  ADS  Google Scholar 

  21. C. Tan, H. Zhang, Z.Y. Fang, W. Zhou, Z. Liu, D.G. Mandrus et al., Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015). https://doi.org/10.1039/C4CS00182F

    Article  Google Scholar 

  22. C. Teichert, Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 365, 335–432 (2002). https://doi.org/10.1016/S0370-1573(02)00009-1

    Article  ADS  Google Scholar 

  23. D.J. Paul, Si/SiGe heterostructures: from material and physics to devices and circuits. Semicond. Sci. Technol. 19, R75–R108 (2004). https://doi.org/10.1088/0268-1242/19/10/R02

    Article  ADS  Google Scholar 

  24. S. Ke, S. Ye, J. Yang, Z. Wang, C. Wang, Y. Yang, Morphological evolution of self-assembled SiGe islands based on a mixed-phase pre-SiGe island layer grown by ion beam sputtering deposition. Appl. Surf. Sci. 328, 387–394 (2015). https://doi.org/10.1016/j.apsusc.2014.11.034

    Article  ADS  Google Scholar 

  25. A.M.P. dos Anjos, I. Doi, J.A. Diniz, Structural characterization of SiGe nanoclusters formed by rapid thermal annealing. Appl. Surf. Sci. 254, 6055–6058 (2008). https://doi.org/10.1016/j.apsusc.2008.02.119

    Article  ADS  Google Scholar 

  26. K.-H. Shim, H. Deok Yang, Y.-H. Kil, J.-H. Yang, W.-K. Hong, J.-J. Kim et al., Characterization of reduced pressure chemical vapor deposited Si0.8Ge0.2/Si multi-layers. Mater. Sci. Semicond. Process 16, 126–130 (2013). https://doi.org/10.1016/j.mssp.2012.06.002

    Article  Google Scholar 

  27. A.F. Abd Rahim, M.R. Hashim, N.K. Ali, A.M. Hashim, M. Rusop, M.H. Abdullah, The evolution of Si-capped Ge islands on Si (100) by RF magnetron sputtering and rapid thermal processing: The role of annealing times. Microelectron. Eng. 126, 134–142 (2014). https://doi.org/10.1016/j.mee.2014.06.026

    Article  Google Scholar 

  28. N. Pinto, R. Murri, R. Rinaldi, G. Barucca, Strain-driven morphology of Si1–xGex islands grown on Si(100). Micron 31, 315–321 (2000). https://doi.org/10.1016/S0968-4328(99)00099-2

    Article  Google Scholar 

  29. N. Sustersic, L. Nataraj, C. Weiland, M. Coppinger, M.V. Shaleev, A.V. Novikov et al., Effects of boron and phosphorus doping on the photoluminescence of self-assembled germanium quantum dots. Appl. Phys. Lett. 94, 183103 (2009). https://doi.org/10.1063/1.3114377

    Article  ADS  Google Scholar 

  30. W. Luo, X. Wang, C. Meyers, N. Wannenmacher, W. Sirisaksoontorn, M.M. Lerner et al., Efficient fabrication of nanoporous Si and Si/Ge enabled by a heat scavenger in magnesiothermic reactions. Sci. Rep. 3, 2222 (2013). https://doi.org/10.1038/srep02222

    Article  ADS  Google Scholar 

  31. G. Sahu, H.P. Lenka, D.P. Mahapatra, B. Rout, F.D. McDaniel, Narrow band UV emission from direct bandgap Si nanoclusters embedded in bulk Si. J. Phys. Condens. Matter 22, 72203 (2010). https://doi.org/10.1088/0953-8984/22/7/072203

    Article  Google Scholar 

  32. B. Saha, M. Sharma, A. Sarma, A. Rath, P.V. Satyam, P. Chakraborty et al., Surface and interfacial structural characterization of MBE grown Si/Ge multilayers. Appl. Surf. Sci. 256, 547–551 (2009). https://doi.org/10.1016/j.apsusc.2009.08.031

    Article  ADS  Google Scholar 

  33. Z. Liu, B. Cheng, W. Hu, S. Su, C. Li, Q. Wang, Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature. Nanoscale Res. Lett. 7, 383 (2012). https://doi.org/10.1186/1556-276X-7-383

    Article  ADS  Google Scholar 

  34. L. Nataraj, N. Sustersic, M. Coppinger, L.F. Gerlein, J. Kolodzey, S.G. Cloutier, Structural and optoelectronic properties of germanium-rich islands grown on silicon using molecular beam epitaxy. Appl. Phys. Lett. 96, 121911 (2010). https://doi.org/10.1063/1.3371759

    Article  ADS  Google Scholar 

  35. H. Richter, Z.P. Wang, L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625–629 (1981). https://doi.org/10.1016/0038-1098(81)90337-9

    Article  ADS  Google Scholar 

  36. I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739–741 (1986). https://doi.org/10.1016/0038-1098(86)90513-2

    Article  ADS  Google Scholar 

  37. T.S. Perova, R.A. Moore, K. Lyutovich, M. Oehme, E. Kasper, Strain, composition and crystalline perfection in thin SiGe layers studied by Raman spectroscopy. Thin Solid Films 517, 265–268 (2008). https://doi.org/10.1016/j.tsf.2008.08.060

    Article  ADS  Google Scholar 

  38. S.S. Iyer, J.C. Tsang, M.W. Copel, P.R. Pukite, R.M. Tromp, Growth temperature dependence of interfacial abruptness in Si/Ge heteroepitaxy studied by Raman spectroscopy and medium energy ion scattering. Appl. Phys. Lett. 54, 219–221 (1989). https://doi.org/10.1063/1.101014

    Article  ADS  Google Scholar 

  39. A. Karatutlu, M. Song, A.P. Wheeler, O. Ersoy, W.R. Little, Y. Zhang et al., Synthesis and structure of free-standing germanium quantum dots and their application in live cell imaging. RSC Adv. 5, 20566–20573 (2015). https://doi.org/10.1039/C5RA01529D

    Article  Google Scholar 

  40. A.B. Talochkin, A.G. Cherkov, Raman determination of uniformity of multilayer Si/Ge structures with Ge quantum dots. Nanotechnology 20, 345702 (2009). https://doi.org/10.1088/0957-4484/20/34/345702

    Article  Google Scholar 

  41. S.K. Ray, R.K. Singha, S. Das, S. Manna, A. Dhar, Ge based nanostructures for electronic and photonic devices. Microelectron. Reliab. 50, 674–678 (2010). https://doi.org/10.1016/j.microrel.2010.01.049

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fatih University Research Council under the Project number of P500661201_B (2170). All the experimental studies were carried out in Bionanotechnology Research and Development Center (BINATAM).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to İsa Şeker or Ali Karatutlu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 566 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şeker, İ., Karatutlu, A., Gürbüz, O. et al. Structural and electrical investigations of MBE-grown SiGe nanoislands. Appl. Phys. A 124, 47 (2018). https://doi.org/10.1007/s00339-017-1448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1448-6

Navigation