Skip to main content
Log in

Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the periodic structure formation upon intense femtosecond pulsed irradiation of chrome steel (100Cr6) for linearly polarised laser beams. The underlying physical mechanism of the laser-induced periodic structures is explored, their spatial frequency is calculated and theoretical results are compared with experimental observations. The proposed theoretical model comprises estimations of electron excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. Simulations describe the sequential formation of sub-wavelength ripples and supra-wavelength grooves. In addition, the influence of the laser wavelength on the periodicity of the structures is discussed. The proposed theoretical investigation offers a systematic methodology towards laser processing of steel surfaces with important applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385 (2012)

    Article  Google Scholar 

  2. V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnology 17, 3234 (2006)

    Article  ADS  Google Scholar 

  3. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049 (2008)

    Article  Google Scholar 

  4. D. Bäuerle, Laser Processing and Chemistry, 3rd rev. (Springer, Berlin, 2000)

    Book  Google Scholar 

  5. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, 2nd edn. (Elsevier, Amsterdam, 2006)

    Google Scholar 

  6. E.L. Papadopoulou, A. Samara, M. Barberoglou, A. Manousaki, S.N. Pagakis, E. Anastasiadou, C. Fotakis, E. Stratakis, Tissue Eng Part C Methods 16, 497 (2010)

    Article  Google Scholar 

  7. Z.B. Wang, M.H. Hong, Y.F. Lu, D.J. Wu, B. Lan, T.C. Chong, J. Appl. Phys. 93, 6375 (2003)

    Article  ADS  Google Scholar 

  8. R. Böhme, S. Pissadakis, D. Ruthe, K. Zimmer, Appl. Phys. A Mater. Sci. Process. 85, 75 (2006)

    Article  ADS  Google Scholar 

  9. I. Paradisanos, C. Fotakis, S.H. Anastasiadis, E. Stratakis, Appl. Phys. Lett. 107, 111603 (2015)

    Article  ADS  Google Scholar 

  10. J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, IEEE J. Sel. Top. Quant. Electron 23, 9000615 (2017)

    Article  Google Scholar 

  11. J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, J. Krüger, Appl. Phys. A Mater. Sci. Process. 117, 103 (2014)

    Article  ADS  Google Scholar 

  12. E. Skoulas, A. Manousaki, C. Fotakis, E. Stratakis, Sci. Rep. 7, 45114 (2017)

    Article  ADS  Google Scholar 

  13. G.D. Tsibidis, E. Stratakis, K.E. Aifantis, J. Appl. Phys. 111, 053502 (2012)

    Article  ADS  Google Scholar 

  14. E. Stratakis, A. Ranella, C. Fotakis, Biomicrofluidics 5, 013411 (2011)

    Article  Google Scholar 

  15. J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2005)

    Article  ADS  Google Scholar 

  16. M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, ACS Nano 3, 4062 (2009)

    Article  Google Scholar 

  17. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  18. Z. Guosheng, P.M. Fauchet, A.E. Siegman, Phys. Rev. B 26, 5366 (1982)

    Article  ADS  Google Scholar 

  19. G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012)

    Article  ADS  Google Scholar 

  20. G.D. Tsibidis, E. Skoulas, A. Papadopoulos, E. Stratakis, Phys. Rev. B 94, 081305(R) (2016)

    Article  ADS  Google Scholar 

  21. J. Bonse, A. Rosenfeld, J. Krüger, J. Appl. Phys. 106, 104910 (2009)

    Article  ADS  Google Scholar 

  22. T.J.Y. Derrien, T.E. Itina, R. Torres, T. Sarnet, M. Sentis, J. Appl. Phys. 114, 083104 (2013)

    Article  ADS  Google Scholar 

  23. M. Barberoglou, G.D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, P.A. Loukakos, Appl. Phys. A Mater. Sci. Process. 113, 273 (2013)

    Article  ADS  Google Scholar 

  24. G.D. Tsibidis, E. Stratakis, P.A. Loukakos, C. Fotakis, Appl. Phys. A 114, 57 (2014)

    Article  ADS  Google Scholar 

  25. O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Appl. Surf. Sci. 252, 4702 (2006)

    Article  ADS  Google Scholar 

  26. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)

    Article  ADS  Google Scholar 

  27. S. Yada, M. Terakawa, Opt. Express 23, 5694 (2015)

    Article  ADS  Google Scholar 

  28. E. Rebollar, J.R.V. de Aldana, J.A. Perez-Hernandez, T.A. Ezquerra, P. Moreno, M. Castillejo, Appl. Phys. Lett. 100, 041106 (2012)

    Article  ADS  Google Scholar 

  29. J.J.J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, S. Amoruso, Sci. Rep. 5, 17929 (2015)

    Article  ADS  Google Scholar 

  30. G.D. Tsibidis, C. Fotakis, E. Stratakis, Phys. Rev. B 92, 041405(R) (2015)

    Article  ADS  Google Scholar 

  31. U. Hermens et al., Appl. Surf. Sci. 418, 499 (2017)

    Article  ADS  Google Scholar 

  32. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  33. J. Hohlfeld, S.S. Wellershoff, J. Güdde, U. Conrad, V. Jahnke, E. Matthias, Chem. Phys. 251, 237 (2000)

    Article  ADS  Google Scholar 

  34. G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)

    Article  ADS  Google Scholar 

  35. Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  36. Technical Data from Lucefin Group. http://www.lucefin.com/wp-content/files_mf/1.3505100cr6.pdf

  37. J. Winter, J. Sotrop, S. Borek, H.P. Huber, J. Minar, Phys. Rev. B 93, 165119 (2016)

    Article  ADS  Google Scholar 

  38. Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Appl. Phys. 110, 113102 (2011)

    Article  ADS  Google Scholar 

  39. A.M. Chen, H.F. Xu, Y.F. Jiang, L.Z. Sui, D.J. Ding, H. Liu, M.X. Jin, Appl. Surf. Sci. 257, 1678 (2010)

    Article  ADS  Google Scholar 

  40. P.B. Johnson, R.W. Christy, Phys. Rev. B 9, 5056 (1974)

    Article  ADS  Google Scholar 

  41. A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5271 (1998)

    Article  ADS  Google Scholar 

  42. N.W. Ashcroft, N.D. Mermin, Solid State Physics. (Holt, New York, 1976)

    MATH  Google Scholar 

  43. V. Semak, A. Matsunawa, J. Phys. D Appl. Phys. 30, 2541 (1997)

    Article  ADS  Google Scholar 

  44. J. Emsley, The Elements (Oxford University Press, Oxford, 1991), 2nd edn.

    Google Scholar 

  45. N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, E.E.B. Campbell, Appl. Phys. A 81, 345 (2005)

    Article  ADS  Google Scholar 

  46. R. Kelly, A. Miotello, Appl. Surf. Sci. 96–98, 205 (1996)

    Article  Google Scholar 

  47. N.M. Bulgakova, I.M. Bourakov, Appl. Surf. Sci. 197, 41 (2002)

    Article  ADS  Google Scholar 

  48. N.M. Bulgakova, A.V. Bulgakov, I.M. Bourakov, N.A. Bulgakova, Appl. Surf. Sci. 197, 96 (2002)

    Article  ADS  Google Scholar 

  49. J.K. Chen, J.E. Beraun, J Opt. A Pure Appl. Opt. 5, 168 (2003)

    Article  ADS  Google Scholar 

  50. G. Tsibidis, E. Stratakis, J. Appl. Phys. 121, 163106 (2017)

    Article  ADS  Google Scholar 

  51. Y. Morinishi, O.V. Vasilyev, T. Ogi, J. Comput. Phys. 197, 686 (2004)

    Article  ADS  Google Scholar 

  52. Y. Morinishi, T.S. Lund, O.V. Vasilyev, P. Moin, J. Comput. Phys. 143, 90 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Zerroukat, C.R. Chatwin, J. Comput. Phys. 112, 298 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  54. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, F. Dausinger, Appl. Surf. Sci. 249, 322 (2005)

    Article  ADS  Google Scholar 

  55. M. Korolczuk-Hejnak, High Temp. 52, 667 (2014)

    Article  Google Scholar 

  56. J. Brillo, I. Egry, J. Mater. Sci. 40, 2213 (2005)

    Article  ADS  Google Scholar 

  57. H.J. Wang, W.Z. Dai, L.G. Hewavitharana, Int. J. Therm. Sci. 47, 7 (2008)

    Article  Google Scholar 

  58. J. Bonse, S. Höhm, A. Rosenfeld, J. Krüger, Appl. Phys. A Mater. Sci. Process. 110, 547 (2013)

    Article  ADS  Google Scholar 

  59. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111 (Springer, Berlin, 1988),

    Book  Google Scholar 

  60. T.J.Y. Derrien, J. Krüger, J. Bonse, J. Opt. 18, 115007 (2016)

    Article  ADS  Google Scholar 

  61. J.C. Wang, C. Guo, J. Appl. Phys. 102, 053522 (2007)

    Article  ADS  Google Scholar 

  62. G.D. Tsibidis, E. Skoulas, E. Stratakis, Opt. Lett. 40, 5172 (2015)

    Article  ADS  Google Scholar 

  63. S.V. Kirner, T. Wirth, H. Sturm, J. Krüger, J. Bonse, J. Appl. Phys. 122, 104901 (2017)

    Article  ADS  Google Scholar 

  64. B. Raillard, L. Gouton, E. Ramos-Moore, S. Grandthyll, F. Müller, F. Müklich, Surf. Coat. Technol. 207, 102 (2012)

    Article  Google Scholar 

  65. T.Y. Hwang, C. Guo, J. Appl. Phys. 108, 073523 (2010)

    Article  ADS  Google Scholar 

  66. M.R. Querry, Contractor Report CRDC-CR-85034 (1985)

  67. T.J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, J. Bonse, J. Appl. Phys. 116, 074902 (2014)

    Article  ADS  Google Scholar 

  68. A.Y. Vorobyev, V.S. Makin, C. Guo, J. Appl. Phys. 101, 034903 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the project LiNaBioFluid, funded by the European Union’s H2020 framework programme for research and innovation under Grant Agreement no. 665337. The authors would like to thank S. Binkowski (BAM 6.3) for polishing the 100Cr6 samples, S. Benemann (BAM 6.1) for SEM, and A. Hertwig (BAM 6.7) for the ellipsometric measurements. G.D.T, A.M, E.Sk. and E.St. also acknowledge financial support from Nanoscience Foundries and Fine Analysis (NFFA)-Europe H2020-INFRAIA-2014-2015 (Grant agreement no. 654360).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George D. Tsibidis, Jörn Bonse or Emmanuel Stratakis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 493 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsibidis, G.D., Mimidis, A., Skoulas, E. et al. Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams. Appl. Phys. A 124, 27 (2018). https://doi.org/10.1007/s00339-017-1443-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1443-y

Navigation