Applied Physics A

, 124:27 | Cite as

Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams

  • George D. TsibidisEmail author
  • Alexandros Mimidis
  • Evangelos Skoulas
  • Sabrina V. Kirner
  • Jörg Krüger
  • Jörn BonseEmail author
  • Emmanuel StratakisEmail author


We investigate the periodic structure formation upon intense femtosecond pulsed irradiation of chrome steel (100Cr6) for linearly polarised laser beams. The underlying physical mechanism of the laser-induced periodic structures is explored, their spatial frequency is calculated and theoretical results are compared with experimental observations. The proposed theoretical model comprises estimations of electron excitation, heat transfer, relaxation processes, and hydrodynamics-related mass transport. Simulations describe the sequential formation of sub-wavelength ripples and supra-wavelength grooves. In addition, the influence of the laser wavelength on the periodicity of the structures is discussed. The proposed theoretical investigation offers a systematic methodology towards laser processing of steel surfaces with important applications.



This work has been supported by the project LiNaBioFluid, funded by the European Union’s H2020 framework programme for research and innovation under Grant Agreement no. 665337. The authors would like to thank S. Binkowski (BAM 6.3) for polishing the 100Cr6 samples, S. Benemann (BAM 6.1) for SEM, and A. Hertwig (BAM 6.7) for the ellipsometric measurements. G.D.T, A.M, E.Sk. and E.St. also acknowledge financial support from Nanoscience Foundries and Fine Analysis (NFFA)-Europe H2020-INFRAIA-2014-2015 (Grant agreement no. 654360).

Supplementary material

339_2017_1443_MOESM1_ESM.pdf (493 kb)
Supplementary material 1 (PDF 493 KB)


  1. 1.
    A.Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385 (2012)CrossRefGoogle Scholar
  2. 2.
    V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnology 17, 3234 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049 (2008)CrossRefGoogle Scholar
  4. 4.
    D. Bäuerle, Laser Processing and Chemistry, 3rd rev. (Springer, Berlin, 2000)CrossRefGoogle Scholar
  5. 5.
    J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale, 2nd edn. (Elsevier, Amsterdam, 2006)Google Scholar
  6. 6.
    E.L. Papadopoulou, A. Samara, M. Barberoglou, A. Manousaki, S.N. Pagakis, E. Anastasiadou, C. Fotakis, E. Stratakis, Tissue Eng Part C Methods 16, 497 (2010)CrossRefGoogle Scholar
  7. 7.
    Z.B. Wang, M.H. Hong, Y.F. Lu, D.J. Wu, B. Lan, T.C. Chong, J. Appl. Phys. 93, 6375 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    R. Böhme, S. Pissadakis, D. Ruthe, K. Zimmer, Appl. Phys. A Mater. Sci. Process. 85, 75 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    I. Paradisanos, C. Fotakis, S.H. Anastasiadis, E. Stratakis, Appl. Phys. Lett. 107, 111603 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, IEEE J. Sel. Top. Quant. Electron 23, 9000615 (2017)CrossRefGoogle Scholar
  11. 11.
    J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, J. Krüger, Appl. Phys. A Mater. Sci. Process. 117, 103 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    E. Skoulas, A. Manousaki, C. Fotakis, E. Stratakis, Sci. Rep. 7, 45114 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    G.D. Tsibidis, E. Stratakis, K.E. Aifantis, J. Appl. Phys. 111, 053502 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    E. Stratakis, A. Ranella, C. Fotakis, Biomicrofluidics 5, 013411 (2011)CrossRefGoogle Scholar
  15. 15.
    J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, ACS Nano 3, 4062 (2009)CrossRefGoogle Scholar
  17. 17.
    J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Guosheng, P.M. Fauchet, A.E. Siegman, Phys. Rev. B 26, 5366 (1982)ADSCrossRefGoogle Scholar
  19. 19.
    G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    G.D. Tsibidis, E. Skoulas, A. Papadopoulos, E. Stratakis, Phys. Rev. B 94, 081305(R) (2016)ADSCrossRefGoogle Scholar
  21. 21.
    J. Bonse, A. Rosenfeld, J. Krüger, J. Appl. Phys. 106, 104910 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    T.J.Y. Derrien, T.E. Itina, R. Torres, T. Sarnet, M. Sentis, J. Appl. Phys. 114, 083104 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    M. Barberoglou, G.D. Tsibidis, D. Gray, E. Magoulakis, C. Fotakis, E. Stratakis, P.A. Loukakos, Appl. Phys. A Mater. Sci. Process. 113, 273 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    G.D. Tsibidis, E. Stratakis, P.A. Loukakos, C. Fotakis, Appl. Phys. A 114, 57 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Appl. Surf. Sci. 252, 4702 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    S. Yada, M. Terakawa, Opt. Express 23, 5694 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    E. Rebollar, J.R.V. de Aldana, J.A. Perez-Hernandez, T.A. Ezquerra, P. Moreno, M. Castillejo, Appl. Phys. Lett. 100, 041106 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    J.J.J. Nivas, S. He, A. Rubano, A. Vecchione, D. Paparo, L. Marrucci, R. Bruzzese, S. Amoruso, Sci. Rep. 5, 17929 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    G.D. Tsibidis, C. Fotakis, E. Stratakis, Phys. Rev. B 92, 041405(R) (2015)ADSCrossRefGoogle Scholar
  31. 31.
    U. Hermens et al., Appl. Surf. Sci. 418, 499 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    J.M. Liu, Opt. Lett. 7, 196 (1982)ADSCrossRefGoogle Scholar
  33. 33.
    J. Hohlfeld, S.S. Wellershoff, J. Güdde, U. Conrad, V. Jahnke, E. Matthias, Chem. Phys. 251, 237 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)ADSCrossRefGoogle Scholar
  36. 36.
  37. 37.
    J. Winter, J. Sotrop, S. Borek, H.P. Huber, J. Minar, Phys. Rev. B 93, 165119 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Appl. Phys. 110, 113102 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    A.M. Chen, H.F. Xu, Y.F. Jiang, L.Z. Sui, D.J. Ding, H. Liu, M.X. Jin, Appl. Surf. Sci. 257, 1678 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 9, 5056 (1974)ADSCrossRefGoogle Scholar
  41. 41.
    A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5271 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics. (Holt, New York, 1976)zbMATHGoogle Scholar
  43. 43.
    V. Semak, A. Matsunawa, J. Phys. D Appl. Phys. 30, 2541 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    J. Emsley, The Elements (Oxford University Press, Oxford, 1991), 2nd edn.Google Scholar
  45. 45.
    N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, E.E.B. Campbell, Appl. Phys. A 81, 345 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    R. Kelly, A. Miotello, Appl. Surf. Sci. 96–98, 205 (1996)CrossRefGoogle Scholar
  47. 47.
    N.M. Bulgakova, I.M. Bourakov, Appl. Surf. Sci. 197, 41 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    N.M. Bulgakova, A.V. Bulgakov, I.M. Bourakov, N.A. Bulgakova, Appl. Surf. Sci. 197, 96 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    J.K. Chen, J.E. Beraun, J Opt. A Pure Appl. Opt. 5, 168 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    G. Tsibidis, E. Stratakis, J. Appl. Phys. 121, 163106 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Morinishi, O.V. Vasilyev, T. Ogi, J. Comput. Phys. 197, 686 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    Y. Morinishi, T.S. Lund, O.V. Vasilyev, P. Moin, J. Comput. Phys. 143, 90 (1998)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Zerroukat, C.R. Chatwin, J. Comput. Phys. 112, 298 (1994)ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, F. Dausinger, Appl. Surf. Sci. 249, 322 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    M. Korolczuk-Hejnak, High Temp. 52, 667 (2014)CrossRefGoogle Scholar
  56. 56.
    J. Brillo, I. Egry, J. Mater. Sci. 40, 2213 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    H.J. Wang, W.Z. Dai, L.G. Hewavitharana, Int. J. Therm. Sci. 47, 7 (2008)CrossRefGoogle Scholar
  58. 58.
    J. Bonse, S. Höhm, A. Rosenfeld, J. Krüger, Appl. Phys. A Mater. Sci. Process. 110, 547 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Tracts in Modern Physics, vol. 111 (Springer, Berlin, 1988),CrossRefGoogle Scholar
  60. 60.
    T.J.Y. Derrien, J. Krüger, J. Bonse, J. Opt. 18, 115007 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    J.C. Wang, C. Guo, J. Appl. Phys. 102, 053522 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    G.D. Tsibidis, E. Skoulas, E. Stratakis, Opt. Lett. 40, 5172 (2015)ADSCrossRefGoogle Scholar
  63. 63.
    S.V. Kirner, T. Wirth, H. Sturm, J. Krüger, J. Bonse, J. Appl. Phys. 122, 104901 (2017)ADSCrossRefGoogle Scholar
  64. 64.
    B. Raillard, L. Gouton, E. Ramos-Moore, S. Grandthyll, F. Müller, F. Müklich, Surf. Coat. Technol. 207, 102 (2012)CrossRefGoogle Scholar
  65. 65.
    T.Y. Hwang, C. Guo, J. Appl. Phys. 108, 073523 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    M.R. Querry, Contractor Report CRDC-CR-85034 (1985)Google Scholar
  67. 67.
    T.J.-Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, J. Bonse, J. Appl. Phys. 116, 074902 (2014)ADSCrossRefGoogle Scholar
  68. 68.
    A.Y. Vorobyev, V.S. Makin, C. Guo, J. Appl. Phys. 101, 034903 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology (FORTH)HeraklionGreece
  2. 2.Materials Science and Technology DepartmentUniversity of CreteHeraklionGreece
  3. 3.Bundesanstalt für Materialforschung und -prüfung (BAM)BerlinGermany

Personalised recommendations