Copper-doped Al12N12 nano-cages: potential candidates for nonlinear optical materials

Abstract

DFT calculations have been performed to study geometric, electronic and NLO properties of copper-doped Al12N12 nano-cages. Doping of copper significantly reduces HOMO–LUMO gap of the nano-cages. The most prominent change in E g is observed for Cu@R6 (copper at the center of the six-membered ring), where E g is reduced by 52% of the original value. Total and partial densities of states have been plotted for all the structures revealing that a new HOMO has appeared between the original frontier molecular orbitals of Al12N12. Polarizabilities and hyperpolarizabilities show manifold increase (α = 418 au and β 0 = 1.8 × 104 au for Cu@R6) than pure Al12N12. TD-DFT calculations have been performed to obtain crucial excited states to account for the high hyperpolarizability values. The hyperpolarizability trend estimated from the two-level method and DFT calculations correlates nicely. The hyperpolarizability trend is justified nicely from the decreased E g. These findings designate such doped nano-cages as excellent candidates for their potential applications in electronic devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    D. Kleinman, Phys. Rev 126, 1977 (1962)

    ADS  Article  Google Scholar 

  2. 2.

    R.-L. Zhong, H.-L. Xu, S. Muhammad, J. Zhang, Z.-M. Su, J. Mater. Chem 22, 2196 (2012)

    Article  Google Scholar 

  3. 3.

    C. Tu, G. Yu, G. Yang, X. Zhao, W. Chen, S. Li, X. Huang, Phys. Chem. Chem. Phys. 16, 1597 (2014)

    Article  Google Scholar 

  4. 4.

    S. Muhammad, H. Xu, Z. Su, J. Phys. Chem. A 115, 923 (2011)

    Article  Google Scholar 

  5. 5.

    Y.-Y. Hu, S.-L. Sun, S. Muhammad, H.-L. Xu, Z.-M. Su, J. Phys. Chem. C 114, 19792 (2010)

    Article  Google Scholar 

  6. 6.

    E. Shakerzdeh, E. Tahmasebi, H.R. Shamlouei, Synth. Met. 204, 17 (2015)

    Article  Google Scholar 

  7. 7.

    N.J. Long, C.K. Williams, Angew. Chem. Int. Ed 42, 2586 (2003)

    Article  Google Scholar 

  8. 8.

    D.F. Eaton, in Materials for Nonlinear Optics (ACS Publications, Washington DC, 1991), p. 128

    Google Scholar 

  9. 9.

    M. Blanchard-Desce, V. Alain, P. Bedworth, S. Marder, A. Fort, C. Runser, M. Barzoukas, S. Lebus, R. Wortmann, Chem. Eur. J. 3, 1091 (1997)

    Article  Google Scholar 

  10. 10.

    S.R. Marder, W.E. Torruellas, M. Blanchard-Desce, V. Ricci, G.I. Stegeman, S. Gilmour, J.-L. Brédas, J. Li, G.U. Bublitz, S.G. Boxer, Science 276, 1233 (1997)

    Article  Google Scholar 

  11. 11.

    A. Plaquet, B. Champagne, F. Castet, L. Ducasse, E. Bogdan, V. Rodriguez, J.-L. Pozzo, New J. Chem 33, 1349 (2009)

    Article  Google Scholar 

  12. 12.

    M. Schulz, S. Tretiak, V. Chernyak, S. Mukamel, J. Am. Chem. Soc. 122, 452 (2000)

    Article  Google Scholar 

  13. 13.

    D. Xiao, F.A. Bulat, W. Yang, D.N. Beratan, Nano Lett. 8, 2814 (2008)

    ADS  Article  Google Scholar 

  14. 14.

    G. de la Torre, P. Vázquez, F. Agulló-López, T. Torres, Chem. Rev 104, 3723 (2004)

    Article  Google Scholar 

  15. 15.

    C.-G. Liu, W. Guan, P. Song, L.-K. Yan, Z.-M. Su, Inorg. Chem 48, 6548 (2009)

    Article  Google Scholar 

  16. 16.

    N. Tancrez, C. Feuvrie, I. Ledoux, J. Zyss, L. Toupet, H. Le Bozec, O. Maury, J. Am. Chem. Soc. 127, 13474 (2005)

    Article  Google Scholar 

  17. 17.

    O. Maury, L. Viau, K. Sénéchal, B. Corre, J.P. Guégan, T. Renouard, I. Ledoux, J. Zyss, H. Le Bozec, Chem. Eur. J. 10, 4454 (2004)

    Article  Google Scholar 

  18. 18.

    S.H. Lee, J.R. Park, M.Y. Jeong, H.M. Kim, S. Li, J. Song, S. Ham, S.J. Jeon, B.R. Cho, ChemPhysChem 7, 206 (2006)

    Article  Google Scholar 

  19. 19.

    D. Cornelis, E. Franz, I. Asselberghs, K. Clays, T. Verbiest, G. Koeckelberghs, J. Am. Chem. Soc. 133, 1317 (2011)

    Article  Google Scholar 

  20. 20.

    G. Yu, X.R. Huang, W. Chen, C.C. Sun, J. Comput. Chem. 32, 2005 (2011)

    Article  Google Scholar 

  21. 21.

    W. Chen, Z.-R. Li, D. Wu, R.-Y. Li, C.-C. Sun, J. Phys. Chem. B 109, 601 (2005)

    Article  Google Scholar 

  22. 22.

    W. Chen, Z.-R. Li, D. Wu, Y. Li, R.-Y. Li, C.-C. Sun, J. Phys. Chem. A 109, 2920 (2005)

    ADS  Article  Google Scholar 

  23. 23.

    W. Chen, Z.-R. Li, D. Wu, Y. Li, C.-C. Sun, F.L. Gu, Y. Aoki, J. Am. Chem. Soc. 128, 1072 (2006)

    Article  Google Scholar 

  24. 24.

    H.-L. Xu, Z.-R. Li, D. Wu, B.-Q. Wang, Y. Li, F.L. Gu, Y. Aoki, J. Am. Chem. Soc. 129, 2967 (2007)

    Article  Google Scholar 

  25. 25.

    X.-M. Liu, A.T. Wiswall, J.E. Rutledge, M.P. Akhter, D.M. Cullen, R.A. Reinhardt, D. Wang, Biomaterials 29, 1686 (2008)

    Article  Google Scholar 

  26. 26.

    S. Muhammad, H. Xu, Y. Liao, Y. Kan, Z. Su, J. Am. Chem. Soc. 131, 11833 (2009)

    Article  Google Scholar 

  27. 27.

    J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, J. Mol. Model. 18, 2653 (2012)

    Article  Google Scholar 

  28. 28.

    A.A. Peyghan, M. Pashangpour, Z. Bagheri, M. Kamfiroozi, E. Physica, Low Dimens. Syst. Nanostruct. 44, 1436 (2012)

    Article  Google Scholar 

  29. 29.

    M. Niu, G. Yu, G. Yang, W. Chen, X. Zhao, X. Huang, Inorg. Chem. 53, 349 (2013)

    Article  Google Scholar 

  30. 30.

    E. Tahmasebi, E. Shakerzadeh, Z. Biglari, Appl. Surf. Sci. 363, 197 (2016)

    ADS  Article  Google Scholar 

  31. 31.

    K. Ayub, J. Mater. Chem. C 4, 10919 (2016)

    Article  Google Scholar 

  32. 32.

    J. Iqbal, K. Ayub, RSC Adv. 6, 94228 (2016)

    Article  Google Scholar 

  33. 33.

    E. Shakerzadeh, N. Barazesh, S.Z. Talebi, Superlattices Microstruct. 76, 264 (2014)

    ADS  Article  Google Scholar 

  34. 34.

    H.R. Shamlouei, A. Nouri, A. Mohammadi, A.D. Tehrani, E. Physica, Low Dimens. Syst. Nanostruct. 77, 48 (2016)

    Article  Google Scholar 

  35. 35.

    H. Huang, F. Yan, Y. Kek, C. Chew, G. Xu, W. Ji, P. Oh, S. Tang, Langmuir 13, 172 (1997)

    Article  Google Scholar 

  36. 36.

    R. Czerwieniec, A. El-Naggar, A. Albassam, I. Kityk, M. Graf, H. Yersin, J. Mater. Sci. Mater. Electron. 26, 8394 (2015)

    Article  Google Scholar 

  37. 37.

    M.J. Frisch, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R., V.G.Z. Cheeseman, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, J.M.M. S. Dapprich, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J., V.B. Tomasi, M. Cossi, R. Cammi, B. Mennucci, Gaussian 09, Rev C.01. Pittsburg. (2010)

  38. 38.

    A.S. Rad, K. Ayub, J. Alloys Compd. 678, 317 (2016)

    Article  Google Scholar 

  39. 39.

    A.S. Rad, K. Ayub, J. Alloys Compd. 672, 161 (2016)

    Article  Google Scholar 

  40. 40.

    T. Yanai, D.P. Tew, N.C. Handy, Chem. Phys. Lett. 393, 51 (2004)

    ADS  Article  Google Scholar 

  41. 41.

    P.A. Limacher, K.V. Mikkelsen, H.P. Lüthi, J. Chem. Phys. 130, 194114 (2009)

    ADS  Article  Google Scholar 

  42. 42.

    A. Alparone, Chem. Phys. Lett. 514, 21 (2011)

    ADS  Article  Google Scholar 

  43. 43.

    B. Champagne, E.A. Perpete, D. Jacquemin, S.J. van Gisbergen, E.-J. Baerends, C. Soubra-Ghaoui, K.A. Robins, B. Kirtman, J. Phys. Chem. A 104, 4755 (2000)

    Article  Google Scholar 

  44. 44.

    B. Champagne, E.A. Perpete, S.J. van Gisbergen, E.-J. Baerends, J.G. Snijders, C. Soubra-Ghaoui, K.A. Robins, B. Kirtman, J. Chem. Phys. 109, 10489 (1998)

    ADS  Article  Google Scholar 

  45. 45.

    S. Van Gisbergen, P. Schipper, O. Gritsenko, E. Baerends, J. Snijders, B. Champagne, B. Kirtman, Phys. Rev. Lett. 83, 694 (1999)

    ADS  Article  Google Scholar 

  46. 46.

    N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839 (2008)

    Article  Google Scholar 

  47. 47.

    J. Beheshtian, A.A. Peyghan, Z. Bagheri, Comput. Mater. Sci. 62, 71 (2012)

    Article  Google Scholar 

  48. 48.

    S. Li, Semiconductor Physical Electronics, 1st edn. (Plenum Press, New York, 1993)

  49. 49.

    G.D. Stucky, S.R. Marder, J.E. Sohn, in Materials for Nonlinear Optics (ACS Publications, Washington DC, 1991), p. 2

    Google Scholar 

  50. 50.

    J.d. Oudar, J. Chem. Phys. 67, 446 (1977)

    ADS  Article  Google Scholar 

  51. 51.

    D.R. Kanis, M.A. Ratner, T.J. Marks, Chem. Rev. 94, 195 (1994)

    Article  Google Scholar 

  52. 52.

    N. Hou, Y.-Y. Wu, H.-S. Wu, H.-M. He, Synth. Met. 232, 39 (2017)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mazhar Amjad Gilani or Khurshid Ayub.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1085 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gilani, M.A., Tabassum, S., Gul, U. et al. Copper-doped Al12N12 nano-cages: potential candidates for nonlinear optical materials. Appl. Phys. A 124, 14 (2018). https://doi.org/10.1007/s00339-017-1425-0

Download citation