Impact of nanoclay dispersed phenol formaldehyde/fumed silica nanocomposites on physico-mechanical and thermal properties

Abstract

In this study, the physical, mechanical and thermal properties of phenol formaldehyde/fumed silica/nanoclay (PF/FS/clay) nanocomposites were investigated. PF/FS/clay nanocomposites were prepared via condensation polymerization method and the effect of different clays as compatibilizers were subsequently investigated. The properties of nanocomposites were characterized through Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and tensile test. FT-IR results confirmed the condensation polymerization and the formation of nanocomposites. SEM result revealed that the surface-modified clay (1.34TCN) had better compatibility with PF/FS matrix compared to surface-modified clay (1.28E), clay (1.30E) and clay (1.31PS). Besides, clay (1.34TCN)-loaded nanocomposites showed better surface morphology among all the nanocomposites. Furthermore, PF/FS/clay (1.34TCN) nanocomposite exhibited better tensile strength and modulus up to 68% due to the strong interfacial bonding between the polymer matrix and fillers. Thermal stability of PF/FS/clay (1.34TCN) nanocomposite showed the highest weight percent loss at the final degradation stage with higher activation energy. Overall, this study proved that clay (1.34TCN) was the most suitable to be introduced in PF/FS matrix.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    K. Haraguchi, Y. Usami, Y. Ono, J. Mater. Sci. 33, 3337 (1998)

    ADS  Article  Google Scholar 

  2. 2.

    J.M. Lin, C.C.M. Ma, Polym. Degrad. Stab. 69, 229 (2000)

    Article  Google Scholar 

  3. 3.

    R.T. Yang, N. Tharappiwattananon, R.Q. Long, Appl. Catal. B Environ. 19, 289 (1998)

    Article  Google Scholar 

  4. 4.

    A. Knop, L.A. Pilato, Phenolic Resins (Springer Berlin Heidelberg, New York, 1985)

    Google Scholar 

  5. 5.

    N. Kornblum, R.A. Smiley, R.K. Blackwood, D.C. Iffland, J. Am. Chem. Soc. 77, 6269 (1955)

    Article  Google Scholar 

  6. 6.

    D. Yan, X. Li, Y. Jiang, H.B. Zhang, B.B. Jia, H.L. Ma, Z.Z. Yu, Mater. Lett. 118, 212 (2014)

    Article  Google Scholar 

  7. 7.

    Q. Fang, H. Cui, G. Du, Int. J. Adhes. Adhes 49, 33 (2014)

    Article  Google Scholar 

  8. 8.

    H. Wang, T. Zhao, L. Zhi, Y. Yan, Y. Yu, Macromol. Rapid Commun. 23, 44 (2002)

    Article  Google Scholar 

  9. 9.

    S.A. Haddadi, M. Mahdavian-Ahadi, F. Abbasi, Ind. Eng. Chem. Res. 53, 11747 (2014)

    Article  Google Scholar 

  10. 10.

    X. Zhuang, X. Qian, J. Lv, Y. Wan, Appl. Surf. Sci. 256, 5343 (2010)

    ADS  Article  Google Scholar 

  11. 11.

    C. Liu, K. Li, H. Li, S. Zhang, Y. Zhang, Polym. Degrad. Stab. 102, 180 (2014)

    Article  Google Scholar 

  12. 12.

    J.C.H. Lai, M.R. Rahman, S. Hamdan, F.K. Liew, M.M. Rahman, M.F. Hossen, J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.41843

    Article  Google Scholar 

  13. 13.

    H. Ma, G. Wei, Y. Liu, X. Zhang, J. Gao, F. Huang, B. Tan, Z. Song, J. Qiao, Polym. 46, 10568 (2005)

    Article  Google Scholar 

  14. 14.

    B.B. Johnsen, A.J. Kinloch, R.D. Mohammed, A.C. Taylor, S. Sprenger, Polymer 48, 530 (2007)

    Article  Google Scholar 

  15. 15.

    H. Javed, B. Merle, E. Prei, R.H.A. Benedetto, M. Goken, Surf. Coat. Tech. 289, 69 (2016)

    Article  Google Scholar 

  16. 16.

    A. Hameed, M. Islam, I. Ahmad, N. Mahmood, S. Saeed, H. Javed, Polym. Compos. 36, 1891 (2015)

    Article  Google Scholar 

  17. 17.

    N. Mahmood, M. Islam, A. Hameed, S. Saeed, A.N. Khan, J. Compos. Mater. 48, 1197 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    E. Miloskovska, C. Friedrichs, D.H. Bogaerds, O. Persenair, M. Duin, M.R. Hansen, G. With, Macromolecules 48, 1093 (2015)

    ADS  Article  Google Scholar 

  19. 19.

    E. Iravani, S.A. Allahyari, Z. Shojaei, M.T. Mostaedi, J. Braz. Chem. Soc. 26, 1 (2015)

    Google Scholar 

  20. 20.

    Y. Luo, Y. Zhao, J. Cai, Y. Duan, S. Du, Mater. Des. 33, 405 (2012)

    ADS  Article  Google Scholar 

  21. 21.

    X.D. Du, Study on the Mechanism of the Synthesis of Phenylbiguanide and the Kinetics of Curing Epoxy. (Wuhan University of Technology, China, 2007)

    Google Scholar 

  22. 22.

    K.M.S. Meera, R.M. Sankar, A. Murali, S.N. Jaisankar, A.B. Mandal, Colloid Surf. B Biointerf. 90, 204 (2012)

    Article  Google Scholar 

  23. 23.

    B.D. Park, J.F. Kadla, Mokchae Konghak 40, 110 (2012)

    Google Scholar 

  24. 24.

    Z. Jiang, Z. Liu, B. Fei, Z. Cai, Y. Yu, X. Liu, J. Anal. Appl. Pyrolysis 94, 48 (2012)

    Article  Google Scholar 

  25. 25.

    J.L. Wei, C. Wei, L. Su, J. Fu, J. Lv, J. Mater. Sci. Chem. Eng. 3, 56 (2015)

    Google Scholar 

  26. 26.

    S.M. Mousavi, S.A. Hashemi, S. Jahandideh, S. Baseri, M. Zarei, S. Azadi, Polym. Renew. Res. 8, 117 (2017)

    Google Scholar 

  27. 27.

    A. Elayaperumal, R. Balaji, M. Sasikumar, Int. J. Res. Eng. Technol. 3, 609 (2014)

    Google Scholar 

  28. 28.

    M. Egashira, M. Nakashima, S. Kawasumi, T. Selyama, J. Phy. Chem. 85, 4125 (1981)

    Article  Google Scholar 

  29. 29.

    C.V. Chanmal, J.P. Jog, Express Polym. Lett. 2, 294 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by Ministry of Higher Education Malaysia (ERGS/02(08)/860/2912(12)).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Josephine Chang Hui Lai.

Ethics declarations

Conflict of interest:

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lai, J.C.H., Rahman, M.R. & Hamdan, S. Impact of nanoclay dispersed phenol formaldehyde/fumed silica nanocomposites on physico-mechanical and thermal properties. Appl. Phys. A 123, 793 (2017). https://doi.org/10.1007/s00339-017-1418-z

Download citation