Skip to main content
Log in

Synthesis of Fe-based core@ZnO shell nanopowders by laser pyrolysis for biomedical applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nano-sized Fe-based (metallic, carbidic and/or oxidic) core@ZnO shell particles have been successfully synthesized in one step by the laser-induced pyrolysis method in an oxygen-deficient environment. The specific precursors were separately introduced through a three concentric nozzles injector: Fe(CO)5 vapors carried by C2H4 sensitizer (central flow), Zn(C2H5)2 vapors carried and diluted with Ar (middle annular coflow) and Ar containing low amount of O2 (external flow). Keeping constant the ethylene-carried Fe(CO)5 and O2 flows, while diminishing the Zn(C2H5)2 flow, we observed an increase of the Fe/Zn ratio in the resulted nanopowders. Also, using the same metal precursor flows, a nonlinear correlation between O2 external flow and nanocomposite atomic oxygen content is evidenced, indicating a possible interference of supplementary oxidation after air exposure. However, the lowest oxygen content along with metallic zinc was found in the sample synthesized in the most oxygen-deficient environment. Transmission electron microscopy (TEM), high-resolution electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDS), X-ray photoelectron spectroscopy (XPS) and magnetic analyses were performed for a comprehensive characterization. The aqueous Fe-based@ZnO nanoparticles (NPs) suspensions were prepared using L-Dopa (l-3,4-dihydroxy-phenylalanine) as stabilizing agent in physiologic media. Also, a biocompatibility in vitro study was performed for PBS (phosphate buffered saline)-dispersed L-Dopa-stabilized Fe-based@ZnO nanoparticles with the best core–shell structural features on both human normal lung fibroblasts and tumoral colorectal cells. Our results proved the ability of these newly synthesized nanostructures to target cancer cells in order to induce cytotoxicity and to exhibit biocompatibility on normal cells for maintaining the proper function of healthy tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Kołodziejczak-Radzimska, Jesionowski, Materials 7, 2833 (2014)

    ADS  Google Scholar 

  2. Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Curr. Mol. Med 13, 1633 (2013)

    Google Scholar 

  3. A.M. Moezzi, M.B. McDonagh, Cortie, Chem. Eng. J. 1, 185–186 (2012)

    Google Scholar 

  4. H. Yang, S. Nie Mater. Chem. Phys. 114, 279 (2009)

    ADS  Google Scholar 

  5. M. Yilmaz, Phys. Scr. 89, 095802 (2014)

    ADS  Google Scholar 

  6. M. Yilmaz, Mater. Sci. Semicondr. Proc. 40, 99 (2015)

    Google Scholar 

  7. M. Yilmaza, M.L. Grillic, Philos. Mag. 96, 2125 (2016)

    ADS  Google Scholar 

  8. S. Hartner, M. Ali, C. Schulz, M. Winterer, H. Wiggers, Nanotechnology 20, 445701 (2009)

    ADS  Google Scholar 

  9. D.Y. Inamdar, A.K. Pathak, I. Dubenko, N. Ali, S. Mahamuni, J. Phys. Chem. C 115, 23671 (2011)

    Google Scholar 

  10. X. Wu, Z. Wei,1 L. Zhang, X. Wang, H. Yang, J. Jiang, J. Nanomater. 2014, 1 (2014)

    ADS  Google Scholar 

  11. R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, Mater. Res. Bull. 43, 2457 (2008)

    Google Scholar 

  12. Y. Wu, T. He, W. Xu, Y. Li, J. Mater. Sci. Mater. El 27, 12155 (2016)

    Google Scholar 

  13. R. Shao, L. Sun, L. Tang, Z. Chen, Chem. Eng. J. 217, 185 (2013)

    Google Scholar 

  14. X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, Z.D. Zhang, Appl. Phys. Lett. 92, 173117 (2008)

    ADS  Google Scholar 

  15. Z. Wang, L. Wu, J. Zhou, B. Shen, Z. Jiang, RSC Adv. 3, 3309 (2013)

    Google Scholar 

  16. Y.J. Chen, F. Zhang, G.G. Zhao, X.Y. Fang, H.B. Jin, P. Gao, C.L. Zhu, M.S. Cao, G. Xiao, J. Phys. Chem. C 114, 9239 (2010)

    Google Scholar 

  17. S. Ghasemi, M. Heidary, M.A. Faramarzi, Z. Habibi, J. Mol. Catal. B Enzym. 100, 121 (2014)

    Google Scholar 

  18. N. Baird, Y. Losovyj, E. Yu. N.V. Yuzik-Klimova, Z.B. Kuchkina, M.Pink Shifrina, B.D. Stein, D.G. Morgan, T. Wang, M.A. Rubin, A.I. Sidorov, E.M. Sulman, L.M. Bronstein, ACS Appl. Mater. Interfaces 8, 891 (2016)

    Google Scholar 

  19. J.S. -Ghomi, S. Zahedi, Appl. Organomet. Chem. https://doi.org/10.1002/aoc.3763 (2017)

    Google Scholar 

  20. J. Li, Q. Wang, Z. Guo, H. Ma, Y. Zhang, D. Wang, Bin, Q.Wei, Sci. Rep. 6, 23558 (2015)

    ADS  Google Scholar 

  21. J. Wen, H. Li, K. Chen, Mater. Chem. Phys. 114, 30 (2009)

    Google Scholar 

  22. W. Chiu, P. Khiew, M. Cloke, D. Isa, H. Lim, T. Tan, N. Huang, S. Radiman, R. Abd-Shukor, M.A.A. Hamid, C. Chia, J. Phys. Chem. C 114, 8212 (2010)

    Google Scholar 

  23. M. Nikazar, M. Alizadeh, R. Lalavi, M.H. Rostami, Iran. J. Environ. Health Sci. Eng. 12, 1 (2014)

    Google Scholar 

  24. L. Carbone, P.D. Cozzoli, Nano Today 5, 449 (2010)

    Google Scholar 

  25. H. Wang, H. Dai, Chem. Soc. Rev. 42, 3088 (2013)

    Google Scholar 

  26. H. Wang, L. Chen, Y. Feng, H. Chen, Acc. Chem. Res. 46, 1636 (2013)

    Google Scholar 

  27. X. Sun, D. Li, Y. Ding, W. Zhu, S. Guo, Z.L. Wang, S. Sun, J. Am. Chem. Soc. 136, 16132 (2014)

    Google Scholar 

  28. Y. Liu, B. Huang, Z. Xie, Appl. Surf. Sci. 427, 693 (2018)

    ADS  Google Scholar 

  29. P. Wang, N. Lu, Y. Su, N. Liu, H. Yu, J. Li, Y. Wu, App. Surf. Sci. 423, 197 (2017)

    ADS  Google Scholar 

  30. N. Ghows, M.H. Entezari, Ultrason. Sonochem. 18, 629 (2011)

    Google Scholar 

  31. T.-J. Yoon, K.N. Yu, E. Kim, J.S. Kim, B.G. Kim, S.-H. Yun, B.-H. Sohn, M.-H. Cho, J.-K. Lee, S.B. Park, Small 2, 209 (2006)

    Google Scholar 

  32. M.K. Singh, A. Agarwal, R.K. Swarnkar, R. Gopal, R.K. Kotnala, Sci. Adv. Mater. 4, 532 (2012)

    Google Scholar 

  33. K.Y. Niu, J. Yang, S.A. Kulinich, J. Sun, X.W. Du, Langmuir, 26, 16652 (2010)

    Google Scholar 

  34. K.Y. Niu, J. Yang, S.A. Kulinich, J. Sun, H. Li, X.W. Du, J. Am. Chem. Soc. 132, 9814 (2010)

    Google Scholar 

  35. J. Bai, Y.-H. Xu, J. Thomasand, J.-P. Wang, Nanotechnology 18, 065701 (2007)

    ADS  Google Scholar 

  36. X. Wang, B. Xu, X. Liu, J. Guo, H. Ichinose, Diamond Relat. Mater. 15, 147 (2006)

    ADS  Google Scholar 

  37. S. Sheen, S. Yang, K. Jun, M. Choi, J. Nanopart. Res. 11, 1767 (2009)

    ADS  Google Scholar 

  38. F. Dumitrache, I. Morjan, R. Alexandrescu, R.E. Morjan, I. Voicu, I. Sandu, I. Soare, M. Ploscaru, C. Fleaca, V. Ciupina, G. Prodan, B. Rand, R. Brydson, A. Woodword, Diamond Relat. Mater. 13, 362 (2004)

    ADS  Google Scholar 

  39. C.T. Fleaca, I. Morjan, R. Alexandrescu, F. Dumitrache, I. Soare, L. Gavrila-Florescu, F.Le Normand, O. Ersen, Phys. E 40, 2252 (2008)

    Google Scholar 

  40. O. Bomatı-Miguel, Y. Leconte, M.P. Morales, N. Herlin-Boime, S. Veintemillas-Verdaguer, J. Magn. Magn. Mater. 290–291, 272 (2005)

    ADS  Google Scholar 

  41. C. Fleaca, F. Dumitrache, E. Dutu, C. Luculescu, A.-M. Niculescu, A. Ilie, E. Vasile, UPB Sci. Bull. B 78, 43 (2016)

    Google Scholar 

  42. C.T. Fleaca, M. Scarisoreanu, I. Morjan, C. Luculescu, A.-M. Niculescu, A. Badoi, E. Vasile, G. Kovacs, Appl. Surf. Sci. 336, 226 (2015)

    ADS  Google Scholar 

  43. L.-L. Han, H.L. Xin, S.A. Kulinich, L.-J. Yang, X.-W. Du, Langmuir 31, 8162 (2015)

    Google Scholar 

  44. N. Sounderya, Y. Zhang, Recent Pat. Biomed. Eng. 1, 34 (2008)

    Google Scholar 

  45. K. Chatterjee, S. Sarkar, K. Jagajjanani Rao, S. Paria, Adv. Colloid Interf. Sci 209, 8 (2014)

    Google Scholar 

  46. J.B. Hall, M. Dobrovolskaia, A. Patri, S. McNeil, Nanomedicine (London) 2, 789 (2007)

    Google Scholar 

  47. M.Y. Hua, H. Liu, H. Yang, P. Chen, R. Tsai, C. Huang, I. Tseng, L. Lyu, C. Ma, H. Tang, T. Yen, K. Wei, Biomaterials 32, 516 (2011)

    Google Scholar 

  48. S.C. Esparza-González, S. Sánchez-Valdés, S.N. Ramírez-Barrón, M.J. .Loera-Arias, J. Bernal, H.I. Meléndez-Ortiz, R. Betancourt-Galindo, Toxicol. In Vitro 37, 134 (2016)

    Google Scholar 

  49. N.-H. Cho, T.-C. Cheong, J.H. Min, J.H. Wu, S.J. Lee, D. Kim, J.-S. Yang, S. Kim, Y.Keun Kim, S.Y. Seong, Nature Nanotechnol. 6, 675 (2011)

    ADS  Google Scholar 

  50. H.-M. Xiong, Adv. Mater. 25, 5329 (2013)

    Google Scholar 

  51. J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Expert Opin. Drug Deliv. 7, 1063 (2010)

    Google Scholar 

  52. G. Bisht, S. Rayamajhi, K.C. Biplad, S.N. Paudel, D. Karna, B.G. Shrestha, Nanoscale Res. Lett. 11, 1 (2016)

    Google Scholar 

  53. M. Roeinfard, A. Bahari, J. Supercond.Nov. Magn. (2017). https://doi.org/10.1007/s10948-017-4154-x

    Article  Google Scholar 

  54. C. Saikia, M.K. Das, A. Ramteke, T.K. Maji, Carbohyd. Polym. 157, 391 (2017)

    Google Scholar 

  55. H. Peng, B. Cui, G. Li, Y. Wang, N. Li, Z. Chang, Y. Wang, Mat. Sci. Eng. C 46, 253 (2015)

    Google Scholar 

  56. H. Peng, C. Hu, J. Hu, X. Tian, T. Wu, Micropor. Mesopor. Mater 226, 140e145 (2016)

    Google Scholar 

  57. H. Zhang, N. Patel, S. Ding, J. Xiong, P. Wu, Biomater Sci., 4(2) (2016). https://doi.org/10.1039/c5bm00361j

    Google Scholar 

  58. H. Zhang, L. Guo, S. Ding, J. Xiong, B. Chen, Oncotarget 7, 36602 (2016)

    Google Scholar 

  59. X. Huang, X. Zheng, C. Yi, S. Yin, NANO: Brief Rep. Rev. 11, 1,650,057–1,650,051 (2016)

    Google Scholar 

  60. J.C. Beltran-Huarac, S.P. Singh, M.S. Tomar, S. Peña, L. Rivera, O.J. Perales-Perez, Mater. Res. Soc. Symp. Proc. 1257, 1257-O06–1257-O04 (2010)

    Google Scholar 

  61. K. Patel, B. Sundar Raj, Y. Chen, X. Lou, Colloid Surf. B 150, 317 (2017)

    Google Scholar 

  62. J.-W. Yun, J.-H. Yoon, B.-C. Kang, N.-H. Cho, S.H. Seok, S.-K. Min, J.H. Min, J.-H. Che, Y.K. Kim, J. Appl. Toxicol. 35, 593 (2015)

    Google Scholar 

  63. S. Singh, K.C. Barick, D. Bahadur, Powder Technol. 269, 513 (2015)

    Google Scholar 

  64. W.-Y. Chen, Y.-C. Chen, Anal. Bioanal. Chem. 398, 2049 (2010)

    Google Scholar 

  65. X. Huang, J. Lu, D. Yue, Y. Fan, M. Zhang, C. Yi, X. Wang, J. Pan. Nanotechnol. 26, 125101 (2015)

    ADS  Google Scholar 

  66. F. Dumitrache, I. Morjan, C. Fleaca, A. Badoi, G. Manda, S. Pop, D. Marta, G. Huminic, A. Huminic, L. Vekas, C. Daia, O. Marinica, C. Luculescu, A.-M. Niculescu, Appl. Surf. Sci. 336, 297 (2015)

    ADS  Google Scholar 

  67. T. Mosmann, J. Immunol. Methods 65, 55 (1983)

    Google Scholar 

  68. M. Roesslein, C. Hirsch, J.P. Kaiser, H.F. Krug, P. Wick, Int. J. Mol. Sci. 14, 24320 (2013)

    Google Scholar 

  69. F. Dumitrache, I. Morjan, C. Fleaca, R. Birjega, E. Vasile, V. Kuncser, R. Alexandrescu, Appl. Surf. Sci. 257, 5265 (2011)

    ADS  Google Scholar 

  70. C.T. Fleaca, I. Morjan, R. Alexandrescu, F. Dumitrache, I. Soare, L. Gavrila-Florescu, F. Le Normand, A. Derory, Appl. Surf. Sci. 255, 5386 (2009)

    ADS  Google Scholar 

  71. X. Yang, C. Li, J. Huang, Y. Liu, W. Chen, J. Shen, Y. Zhu, C. Li, RSC Adv. 7, 15168 (2017)

    Google Scholar 

  72. X. Liu, D. Geng, P. Shang, H. Meng, F. Yang, B. Li, D. Kang, Z. Zhang, J. Phys. D: Appl. Phys. 41, 175006 (2008)

    ADS  Google Scholar 

  73. S. Singh, K.C. Barick, D. Bahadur, J. Mater. Chem. A 1, 3325 (2013)

    Google Scholar 

  74. G.Y. Liou, P. Storz, Free Radic. Res. 44(5), 479 (2010)

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI-UEFISCDI, project number PN-III-P2-2.1-PED-2016-1698, within PNCDI III and also by the Nucleu 4N/2016 Program from the same authority. The contributions of Dr. Cristian Mihailescu (XPS analysis) and Dr. Oana Marinica (magnetic measurements) are also greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavinia Gavrila-Florescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrila-Florescu, L., Dumitrache, F., Balas, M. et al. Synthesis of Fe-based core@ZnO shell nanopowders by laser pyrolysis for biomedical applications. Appl. Phys. A 123, 802 (2017). https://doi.org/10.1007/s00339-017-1416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1416-1

Navigation