Skip to main content
Log in

Quantum-interference effect on the spin polarization driven by protein-like single-helical molecules

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report a theoretical study about the spin-dependent electron transport through a two-arm mesoscopic circuit in which two protein-like single-helical molecules connect serially with two normal metallic leads, respectively. Based on an effective-model Hamiltonian, the spin polarization is evaluated using the Landauer–Büttiker formula. Our results reveal that in comparison with the single-arm case, the spin-polarization efficiency can be enhanced in this system, by adjusting the length ratio of two molecules and the molecule–lead coupling manner. Besides, when local magnetic flux is introduced, the Aharonov–Bohm effect makes a nontrivial contribution to the spin polarization. These findings can be helpful for building the helical-molecule-based spin filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Fert, Rev. Mod. Phys. 80, 1517 (2008)

    Article  ADS  Google Scholar 

  2. A.R. Rocha, V.M. Garcia-Suarez, S.W. Bailey, C.J. Lambert, J. Ferrer, S. Sanvito, Nat. Mater. 4, 335 (2005)

    Article  ADS  Google Scholar 

  3. S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011)

    Article  Google Scholar 

  4. V.A. Dediu, L.E. Hueso, I. Bergenti, C. Taliani, Nat. Mater. 8, 707 (2009)

    Article  ADS  Google Scholar 

  5. W.J.M. Naber, S. Faez, W.G. van der Wiel, J. Phys. D 40, 205(R) (2007)

    Article  ADS  Google Scholar 

  6. J. Brede, N. Atodiresei, S. Kuck, P. Lazíc, V. Caciuc, Y. Morikawa, G. Hoffmann, S. Blgel, R. Wiesendanger, Phys. Rev. Lett. 105, 047204 (2010)

    Article  ADS  Google Scholar 

  7. F.J. Wang, C.G. Yang, Z.V. Vardeny, X.G. Li, Phys. Rev. B 75, 245324 (2007)

    Article  ADS  Google Scholar 

  8. R.G. Endres, D.L. Cox, Rev. Mod. Phys. 76, 195 (2004)

    Article  ADS  Google Scholar 

  9. J.C. Genereux, J.K. Barton, Chem. Rev. 110, 1642 (2010)

    Article  Google Scholar 

  10. A. Saraiva-Souza, M. Smeu, L. Zhang, A.G.S. Filho, H. Guo, M.A. Ratner, J. Am. Chem. Soc. 136, 15065 (2014)

    Article  Google Scholar 

  11. R. Naaman, D.H. Waldeck, Annu. Rev. Phys. Chem. 66, 263 (2015)

    Article  ADS  Google Scholar 

  12. B. Göhler, V. Hamelbeck, T.Z. Markus, M. Kettner, G.F. Hanne, Z. Vager, R. Naaman, H. Zacharias, Science 331, 894 (2011)

    Article  ADS  Google Scholar 

  13. Z. Xie, T.Z. Markus, S.R. Cohen, Z. Vager, R. Gutierrez, R. Naaman, Nano Lett. 11, 4652 (2011)

    Article  ADS  Google Scholar 

  14. H. Einati, D. Mishra, N. Friedman, M. Sheves, R. Naaman, Nano Lett. 15, 1052 (2015)

    Article  ADS  Google Scholar 

  15. M. Kettner, B. Göhler, H. Zacharias, D. Mishra, V. Kiran, R. Naaman, C. Fontanesi, D.H. Waldeck, S. Sęk, J. Paw lowski, J. Juhaniewicz, J. Phys. Chem. C 119, 14542 (2015)

    Article  Google Scholar 

  16. D. Mishra, T.Z. Markus, R. Naaman, M. Kettner, B. Gohler, H. Zachaias, N. Friedman, M. Sheves, C. Fontanesi, Proc. Natl. Acad. Sci. USA 110, 14872 (2013)

    Article  ADS  Google Scholar 

  17. A.M. Guo, Q.F. Sun, Proc. Natl. Acad. Sci. USA 111, 11658 (2014)

    Article  ADS  Google Scholar 

  18. T.R. Pan, A.M. Guo, Q.F. Sun, Phys. Rev. B 92, 115418 (2015)

    Article  ADS  Google Scholar 

  19. S. Varela, E. Medina, F. López, V. Mujica, J. Phys.: Condens. Matter 26, 015008 (2014)

    Google Scholar 

  20. S. Matityahu, Y. Utsumi, A. Aharony, O. Entin-Wohlman, C.A. Balseiro, Phys. Rev. B 93, 075407 (2016)

    Article  ADS  Google Scholar 

  21. K. Michaeli, R. Naaman, arXiv: 1512.03435

  22. E. Ai-Min Guo, C. Díaz, R. Gaul, F. Gutierrez, G.Cuniberti Domínguez-Adame, Qing-Feng Sun, Phys. Rev. B 89, 205434 (2014)

    Article  ADS  Google Scholar 

  23. A.-M. Guo, Q.-F. Sun, Phys. Rev. Lett. 108, 218102 (2012)

    Article  ADS  Google Scholar 

  24. A.-M. Guo, Q.-F. Sun, Phys. Rev. B 86, 115441 (2012)

    Article  ADS  Google Scholar 

  25. N.J. Tao, Nat. Nanotech. 1, 173 (2006)

    Article  ADS  Google Scholar 

  26. H.N. Wu, X. Wang, Y.J. Zhang, G.Y. Yi, W.J. Gong, Appl. Phys. A 122, 626 (2016)

    Article  ADS  Google Scholar 

  27. L. Miao, Q. Fan, L. Zhao, Q. Qiao, X. Zhang, C. Hou, J. Xu, Q. Luo, J. Liu, Chem. Commun. 52, 4092 (2016)

    Article  Google Scholar 

  28. A.M. Guo, T.R. Pan, T.F. Fang, X.C. Xie, Q.F. Sun, Phys. Rev. B 94, 165409 (2016)

    Article  ADS  Google Scholar 

  29. R. Gutierrez, E. Díaz, R. Naaman, G. Cuniberti, Phys. Rev. B 85, 081404(R) (2012)

    Article  ADS  Google Scholar 

  30. I. Z̆utić, J. Fabian, S. DasSarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  31. S. Datta, Electronic transport in mesoscopic systems (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  32. W. Gong, Y. Zheng, Y. Liu, T. Lü, Phys. Rev. B 73, 245329 (2006)

    Article  ADS  Google Scholar 

  33. Y.M. Blanter, M. Büttiker, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  34. W. Gong, Y. Zheng, Y. Liu, T. Lü, Physica E 40, 618 (2008)

    Article  ADS  Google Scholar 

  35. L.G.D. Hawke, G. Kalosakas, C. Simserides, Eur. Phys. J. E. 32, 291 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant no. N160504009), Science Research Foundation of Education Bureau of Liaoning Province, China (Grant no. L2014099), and National Natural Science Foundation of China (Grant no. 11504045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jiang Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, HN., Yang, Y., Yi, GY. et al. Quantum-interference effect on the spin polarization driven by protein-like single-helical molecules. Appl. Phys. A 123, 765 (2017). https://doi.org/10.1007/s00339-017-1373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1373-8

Navigation