Skip to main content

Advertisement

Log in

CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Earth abundant copper–zinc–tin–chalcogenide is an attractive class of materials for the fabrication of high efficiency, low cost, and sustainable thin-film solar cells. A CZTSSe solar cell was modeled and the effects of absorber layer band-gap grading were investigated. Regarding the tunable bandgap of kesterite absorber layers which is between 0.95 eV for CZTSe and 1.5 eV for CZTS, several grading models were simulated in SCAPS. First, using a set of comprehensive absorption data for CZTS and CZTSe, the basic bandgap was selected to be 1.15 eV due to experimental aspects, and then, five grading models namely back/front linear, back/front exponential, and inside graded were explored. The investigation of simulation results showed that the recombination rate improvement in back and front regions along with current density enhancement is achievable by these graded band-gap profiles. Finally, the modified inside graded model was reached to a power conversion efficiency of 15.6% which leaded to a considerable output performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Shi, D. Attygalle, A.H. Jayatissa, Kesterite-based next generation high performance thin film solar cell: current progress and future prospects. J. Mater. Sci: Mater. Electron. 28, 2290–2306 (2017)

    Google Scholar 

  2. F. Solar, First solar achieves yet another cell conversion efficiency world record., 201θ (2016)

  3. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Effects of heavy alkali elements in Cu (In, Ga) Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi (RRL)-Rapid Res. Lett. 10, 583–586 (2016)

    Article  ADS  Google Scholar 

  4. G. Wang, W. Zhao, Y. Cui, Q. Tian, S. Gao, L. Huang et al., Fabrication of a Cu2ZnSn (S, Se) 4 photovoltaic device by a low-toxicity ethanol solution process. ACS Appl. Mater. Interfaces, 5, 10042–10047 (2013)

    Article  Google Scholar 

  5. P. Darvishzadeh, H. Sohrabpoor, N.E. Gorji, Numerical device simulation of carbon nanotube contacted CZTS solar cells. Opt. Quantum Electron. 48, 480 (2016)

    Article  Google Scholar 

  6. K. Woo, Y. Kim, W. Yang, K. Kim, I. Kim, Y. Oh et al., Band-gap-graded Cu2ZnSn (S1-x, Sex) 4 solar cells fabricated by an ethanol-based, particulate precursor ink route. Sci. Rep. 3, 3069 (2013)

    Article  ADS  Google Scholar 

  7. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu et al., Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater., 4, (2014)

  8. S.M. Yu, K.-S. Lim, A. Khalkar, J.-B. Yoo, Selenization of Cu2ZnSnS4 thin film using a Se metal-organic source for solar cell applications. Appl. Phys. A 122, 767 (2016)

    Article  ADS  Google Scholar 

  9. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421–1436 (2011)

    Article  Google Scholar 

  10. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovoltaics Res. Appl. 21, 72–76 (2013)

    Article  Google Scholar 

  11. S. Chen, X. Gong, A. Walsh, S.-H. Wei, Crystal and electronic band structure of Cu2ZnSnX4 (X = S and Se) photovoltaic absorbers: first-principles insights. Appl. Phys. Lett. 94, 41903 (2009)

    Article  Google Scholar 

  12. S. Chen, A. Walsh, J.-H. Yang, X.-G. Gong, L. Sun, P.-X. Yang et al., Compositional dependence of structural and electronic properties of Cu 2 ZnSn (S, Se) 4 alloys for thin film solar cells. Phys. Rev. B 83, 125201 (2011)

    Article  ADS  Google Scholar 

  13. S. Siebentritt, Why are kesterite solar cells not 20% efficient? Thin Solid Films 535, 1–4 (2013)

    Article  ADS  Google Scholar 

  14. H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, Y. Zhang, Tunable band gap Cu 2 ZnSnS 4x Se 4 (1 − x) nanocrystals: experimental and first-principles calculations. Cryst. Eng. Comm. 13, 2222–2226 (2011)

    Article  Google Scholar 

  15. K. Decock, J. Lauwaert, M. Burgelman, Characterization of graded CIGS solar cells. Energy Procedia 2, 49–54 (2010)

    Article  Google Scholar 

  16. T. Dullweber, U. Rau, H. Schock, A new approach to high-efficiency solar cells by band gap grading in Cu (In, Ga) Se 2 chalcopyrite semiconductors. Sol. Energy Mater. Sol. Cells 67, 145–150 (2001)

    Article  Google Scholar 

  17. N.E. Gorji, M.D. Perez, U. Reggiani, L. Sandrolini, A new approach to valence and conduction band grading in CIGS thin film solar cells. Int. J. Eng. Technol. 4, 573 (2012)

    Article  Google Scholar 

  18. O. Lundberg, M. Edoff, L. Stolt, The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films 480, 520–525 (2005)

    Article  ADS  Google Scholar 

  19. T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. 22 (2010)

    Article  Google Scholar 

  20. M. Gloeckler, J. Sites, Efficiency limitations for wide-band-gap chalcopyrite solar cells. Thin Solid Films 480, 241–245 (2005)

    Article  ADS  Google Scholar 

  21. M. Turcu, O. Pakma, U. Rau, Interdependence of absorber composition and recombination mechanism in Cu (In, Ga)(Se, S) 2 heterojunction solar cells. Appl. Phys. Lett. 80, 2598–2600 (2002)

    Article  ADS  Google Scholar 

  22. A. Niemegeers, M. Burgelman, K. Decock, J. Verschraegen, “Stefaan Degrave SCAPS manual” ed: Version, 2014

  23. N. Khoshsirat, N.A. Md Yunus, M.N. Hamidon, S. Shafie, N. Amin, Analysis of absorber and buffer layer band gap grading on CIGS thin film solar cell performance using SCAPS. Pertanika J. Sci. Technol. 23, 241–250 (2015)

    Google Scholar 

  24. S.H. Wei, A. Zunger, Band offsets and optical bowings of chalcopyrites and Zn-based II-VI alloys. J. Appl. Phys. 78, 3846–3856 (1995)

    Article  ADS  Google Scholar 

  25. M. Burgelman, J. Marlein, Analysis of graded band gap solar cells with SCAPS, in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, 2008, pp. 2151–2155

  26. M. Patel, A. Ray, Enhancement of output performance of Cu 2 ZnSnS 4 thin film solar cells—a numerical simulation approach and comparison to experiments. Physica B 407, 4391–4397 (2012)

    Article  ADS  Google Scholar 

  27. O. Simya, A. Mahaboobbatcha, K. Balachander, Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID simulation. Superlattices Microstruct. 92, 285–293 (2016)

    Article  ADS  Google Scholar 

  28. O. Simya, A. Mahaboobbatcha, K. Balachander, A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248–261 (2015)

    Article  ADS  Google Scholar 

  29. K. Ito, Copper zinc tin sulfide-based thin film solar cells. Wiley (2014)

  30. H. ElAnzeery, O. El Daif, M. Buffiere, S. Oueslati, K. Ben Messaoud, D. Agten et al., Refractive index extraction and thickness optimization of Cu2ZnSnSe4 thin film solar cells. Phys. Status Solidi (a), 212, 1984–1990 (2015)

    Article  ADS  Google Scholar 

  31. M. León, S. Levcenko, R. Serna, G. Gurieva, A. Nateprov, J. Merino et al., Optical constants of Cu2ZnGeS4 bulk crystals (2010)

    Article  ADS  Google Scholar 

  32. S. Choi, H. Zhao, C. Persson, C. Perkins, A. Donohue, B. To et al., Dielectric function spectra and critical-point energies of Cu2ZnSnSe4 from 0.5 to 9.0 eV. J. Appl. Phys. 111, 033506 (2012)

    Article  ADS  Google Scholar 

  33. K. Orgassa, H.W. Schock, J. Werner, Alternative back contact materials for thin film Cu (In, Ga) Se 2 solar cells. Thin Solid Films 431, 387–391 (2003)

    Article  ADS  Google Scholar 

  34. M.A. Contreras, M.J. Romero, B. To, F. Hasoon, R. Noufi, S. Ward et al., Optimization of CBD CdS process in high-efficiency Cu (In, Ga) Se 2-based solar cells. Thin Solid Films 403, 204–211 (2002)

    Article  ADS  Google Scholar 

  35. S. Siebentritt, Alternative buffers for chalcopyrite solar cells. Solar Energy. 77, 767–775 (2004)

    Article  ADS  Google Scholar 

  36. M. Buffiere, G. Brammertz, S. Oueslati, H. El Anzeery, J. Bekaert, K.B. Messaoud et al., Spectral current–voltage analysis of kesterite solar cells. J. Phys. D: Appl. Phys. 47, 175101 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Baghban Parashkouh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadnejad, S., Baghban Parashkouh, A. CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer. Appl. Phys. A 123, 758 (2017). https://doi.org/10.1007/s00339-017-1371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1371-x

Navigation