Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure


We characterize the optical properties of a double-layer wire grid structure and investigate in detail the excitation mechanism of surface plasmon polaritons (SPPs). Angular spectra for the transmittance of the transverse magnetic polarized light that are obtained through the experiment reveal two peaks. In addition, simulated mapping of the transmittance and the magnetic field distribution indicate that SPPs are excited in two areas of the wire grid structures: at the interface between the Au layer and the resist layer or the glass substrate and at the interface between the Au layer and air. The experimental data are consistent with the transmittance mapping result and the distribution of the magnetic field. Accordingly, we constructed a model of SPPs propagation. We consider that SPPs excited at the interface between the Au layer and the resist layer or the glass substrate strongly contribute to the extraordinary transmission observed in the wire grid structures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    G.R. Bird, M. Parrish Jr., J. Opt. Soc. Am. 50, 886 (1960)

    Article  ADS  Google Scholar 

  2. 2.

    M. Hass, M. O’Hara, Appl. Opt. 4, 1027 (1965)

    Article  ADS  Google Scholar 

  3. 3.

    J.P. Auton, Appl. Opt. 6, 1023 (1967)

    Article  ADS  Google Scholar 

  4. 4.

    B. Stenkamp, M. Abraham, W. Ehrfeld, E. Knapek, E. Hintermaier, M.T. Gale, R. Morf, Proc. SPIE 2213, 288 (1994)

    Article  ADS  Google Scholar 

  5. 5.

    H. Lochbihler, R. Depine, Appl. Opt. 32, 3459 (1993)

    Article  ADS  Google Scholar 

  6. 6.

    H. Tamada, T. Doumuki, T. Yamaguchi, S. Matsumoto, Opt. Lett. 22, 419 (1997)

    Article  ADS  Google Scholar 

  7. 7.

    X.J. Yu, H.S. Kwok, J. Appl. Phys. 93, 4407 (2003)

    Article  ADS  Google Scholar 

  8. 8.

    M. Xu, H.P. Urbach, D.K.G. de Boer, H.J. Cornelissen, Opt. Exp. 13, 2303 (2005)

    Article  ADS  Google Scholar 

  9. 9.

    J.J. Wang, F. Walters, X. Liu, P. Sciortino, X. Deng, Appl. Phys. Lett. 90, 061104 (2007)

    Article  ADS  Google Scholar 

  10. 10.

    S.Y. Hsu, K.L. Lee, E.H. Lin, M.C. Lee, P.K. Wei, Appl. Phys. Lett. 95, 013105 (2009)

    Article  ADS  Google Scholar 

  11. 11.

    M. Beresna, M. Gecevičius, P.G. Kazansky, T. Gertus, Appl. Phys. Lett. 98, 201101 (2011)

    Article  ADS  Google Scholar 

  12. 12.

    K. Iwami, M. Ishii, Y. Kuramochi, K. Ida, N. Umeda, Appl. Phys. Lett. 101, 161119 (2012)

    Article  ADS  Google Scholar 

  13. 13.

    M. Ishii, K. Iwami, N. Umeda, Appl. Phys. Lett. 106, 021115 (2015)

    Article  ADS  Google Scholar 

  14. 14.

    A. Djalalian-Assl, J.J. Cadusch, Z.Q. Teo, T.J. Davis, A. Roberts Appl. Phys. Lett. 106, 041104 (2015)

    Article  ADS  Google Scholar 

  15. 15.

    Z. Yu, P. Deshpande, W. Wu, J. Wang, S.Y. Chou, Appl. Phys. Lett. 77, 927 (2000)

    Article  ADS  Google Scholar 

  16. 16.

    Y. Ekinci, H.H. Solak, C. David, H. Sigg, Opt. Exp. 14, 2323 (2006)

    Article  ADS  Google Scholar 

  17. 17.

    Z. Ye, Y. Peng, T. Zhai, Y. Zhou, D. Liu, J. Opt. Soc. Am. B 28, 502 (2011)

    Article  ADS  Google Scholar 

  18. 18.

    Z. Ye, J. Zheng, S. Sun, S. Chen, D. Liu, Plasmonics 8, 555 (2013)

    Article  Google Scholar 

  19. 19.

    Y. Ma, N. Sun, R. Zhang, L. Guo, Y. She, J. Zheng, J. Appl. Phys. 116, 044314 (2014)

    Article  ADS  Google Scholar 

  20. 20.

    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  21. 21.

    K.J. Klein Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004)

    Article  ADS  Google Scholar 

  22. 22.

    H.F. Schouten, N. Kuzmin, G. Dubois, T.G. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. ‘t, D. Hooft, G. Lenstra, Eliel, Phys. Rev. Lett. 94, 053901 (2005)

    Article  ADS  Google Scholar 

  23. 23.

    A. Motogaito, Y. Morishita, H. Miyake, K. Hiramatsu, Plasmonics 10, 1657 (2015)

    Article  Google Scholar 

  24. 24.

    A. Motogaito, S. Mito, H. Miyake, K. Hiramatsu, Opt. Photon. J. 6, 164 (2016)

    Article  ADS  Google Scholar 

  25. 25.

    A. Motogaito, M. Kito, H. Miyake, K. Hiramatsu, Proc. SPIE 9668, 96681Q-1 (2015)

    Google Scholar 

Download references


This work is supported by Grants in Aid for Scientific Research of Japan Society for the Promotion of Science (JSPS, KAKENHI, No. 26390082 and 15H03556). The authors would like to thank Enago (http://www.enago.jp) for the English language review.

Author information



Corresponding author

Correspondence to Atsushi Motogaito.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Motogaito, A., Nakajima, T., Miyake, H. et al. Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure. Appl. Phys. A 123, 729 (2017). https://doi.org/10.1007/s00339-017-1367-6

Download citation