Skip to main content
Log in

Effect of quantum confinement on thermoelectric properties of vanadium dioxide nanofilms

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The quantum confinement effect on thermoelectric properties of pristine vanadium dioxide (VO2) nanofilms across semiconductor to metal phase transition (SMT) has been demonstrated by studying VO2 nanofilms of 15 nm thickness in comparison to microfilms of 290 nm thickness synthesized via inorganic sol–gel method casted on glass substrates by spin coating technique. The ebbing of phase transition temperature in nanofilms across SMT was consistent with the results obtained from resistance–temperature hysteresis contour during SMT dynamics of the nanofilms. The temperature dependent Hall and Seebeck measurements revealed that electrons were the charge carriers in the nanofilms and that the value of charge carrier concentration increased as much as 4 orders of magnitude while going across SMT which stood responsible almost entirely for resistance variations. The decline in carrier mobility and escalation in Seebeck coefficient in the low temperature semiconducting region were splendidly witnessed across SMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I.M. Lifshitz, A.M. Kosevich, J. Expe, Theory of magnetic susceptibility in metals at low temperatures. Theoret. Phys.(USSR) 29, 730, English transl. Sov. Phys. JETP, 2(1956)636 (1955)

    Google Scholar 

  2. Y.F. Ogrin, V.N. Lutskii, M.I. Elinson, Observation of quantum size effects in thin bismuth films. Sov. Phys. JETP, Lett. 3, 71 (1966)

    ADS  Google Scholar 

  3. P. Singh, D. Kaur, Influence of film thickness on texture and electrical and optical properties of room temperature deposited nanocrystalline V2O5 thin films. J. Appl. Phys. 103, 043507 (2008)

    ADS  Google Scholar 

  4. F.I. Ezema, A.B.C. Ekwealor, R.U. Osuji, Optical properties of chemical bath deposited nickel oxide (NiOx) thin films. Superficies Y Vacio 21, 6 (2008)

    Google Scholar 

  5. A.A. Dakhel, Optical properties of highly conductive and transparent Au-incorporated Eu oxide thin films. J. Alloys Compd. 470, 195 (2009)

    Google Scholar 

  6. S. Kaleemulla, N.M. Rao, M.G. Joshi, A.S. Reddy, S. Uthanna, P.S. Reddy, Electrical and optical properties of In2O3: Mo thin films prepared at various Mo-doping levels. J. Alloys Compd. 504, 35 (2010)

    Google Scholar 

  7. A.V. Ravindra, P. Padhan, W. Prellier, Electronic structure and optical band gap of CoFe2O4 thin films. Appl. Phys. Lett. 101, 161902 (2012)

    ADS  Google Scholar 

  8. F.K. Mugwang, P.K. Karimi, W.K. Njoroge, O. Omayio, Waita, S.M, Optical characterization of Copper Oxide thin films prepared by reactive dc magnetron sputtering for solar cell applications. Int. J. Thin Film Sci. Tec 2, 15 (2013)

    Google Scholar 

  9. S.A. Aly, M.A. Kaid, N.Z. El-Sayed, Some optical aspects of thermally evaporated lead oxide thin films. Acta Phys. Pol. A 124, 713 (2013)

    Google Scholar 

  10. M.M. Hassan, W. Khan, A. Azam, A.H. Naqvi, Effect of size reduction on structural and optical properties of ZnO matrix due to successive doping of Fe ions. J. Luminescence 145, 160 (2014)

    ADS  Google Scholar 

  11. D. Sharma, Khare, N.,Tuning of optical bandgap and magnetization of CoFe2O4 thin films. Appl. Phys. Lett. 105, 032404 (2014)

    ADS  Google Scholar 

  12. R. Mukherjee, C.S. Prajapati, P.P. Sahay, Tin-incorporation induced changes in the microstructural, optical, and electrical behavior of tungsten oxide nanocrystalline thin films grown via spray pyrolysis. J. Therm. Spray Technol 23, 1445 (2014)

    ADS  Google Scholar 

  13. X.D. Li, T.P. Chen, Y. Liu, K.C. Leong, Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing:effect of band gap expansion and free-electron absorption. Optics express 22, 23086 (2014)

    ADS  Google Scholar 

  14. Z.Y. Banyamin, P.J. Kelly, G. West, J. Boardman, Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coatings 4, 732 (2014)

    Google Scholar 

  15. X.D. Li, S. Chen, T.P. Chen, Y. Liu, Thickness dependence of optical properties of amorphous indium gallium zinc oxide thin films: effects of free-electrons and quantum confinement. ECS Solid State Lett. 4, 29 (2015)

    Google Scholar 

  16. H.K. Li, T.P. Chen, S.G. Hu, X.D. Li, Y. Liu, P.S. Lee, X.P. Wang, H.Y. Li, G.Q. Lo, Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure. Optics Expr. 23, 27683 (2015)

    ADS  Google Scholar 

  17. V. Perumal, U. Hashim, S.C. Gopinath, R. Haarindraprasad, W.W. Liu, P. Poopalan, S.R. Balakrishnan, V. Thivina, A.R. Ruslinda, Thickness dependent nanostructural, morphological, optical and impedometric analyses of zinc oxide-gold hybrids: nanoparticle to thin film. Plos One 10, 0144964 (2015)

    Google Scholar 

  18. K. Gesheva, M.A. Arvizu, G. Bodurov, T. Ivanova, G.A. Niklasson, M. Iliev, T. Vlakhov, P. Terzijska, G. Popkirov, M. Abrashev, S. Boyadjiev, Optical, structural and electrochromic properties of sputter-deposited W-Mo oxide thin films. In J. Physics: Conf. Series 764, 012010 (2016)

    Google Scholar 

  19. F.J. Morin, Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 34 (1959)

    ADS  Google Scholar 

  20. A.S. Barker, H.W. Verleur, H.J. Guggenheim, Infrared optical properties of vanadium dioxide above and below the transition temperature. Phys. Rev. Lett. 17, 1286 (1966)

    ADS  Google Scholar 

  21. A.I. Sidorov, E.N. Sosnov, Spatial and temporal characteristics of TEA-CO2 laser action with intracavity vanadium dioxide mirrors. Proc. SPIE 3611, 323 (1999)

    ADS  Google Scholar 

  22. C. Chen, X. Yi, X. Zhao, B. Xiong, Characterizations of VO2-based uncooled microbolometer linear array. Sens. Actuators A Phys. 90, 212 (2001)

    Google Scholar 

  23. L. Jiang, W.N. Carr, Vanadium dioxide thin films for thermo-optical switching applications. MRS Proc. 785, D10-4 (2003)

    Google Scholar 

  24. L. Jiang, W.N. Carr, Design, fabrication and testing of a micromachined thermo-optical light modulator based on a vanadium dioxide array. J. Micromech. Microeng. 14, 833 (2004)

    ADS  Google Scholar 

  25. A. Paone, M. Joly, R. Sanjines, A. Romanyuk, J.L. Scartezzini, A. Schüler, Thermochromic films of VO2:W for smart solar energy applications. CISBAT Proc. 9, 74100F (2009)

    Google Scholar 

  26. Y. Li, S. Ji, Y. Gao, H. Luo, M. Kanehira, Core-shell VO2@ TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings. Sc. Rep 3, 1370 (2013)

    ADS  Google Scholar 

  27. Y. Lu, S. Zhou, G. Gu, L. Wu, Preparation of transparent, hard thermochromic polysiloxane/tungsten-doped vanadium dioxide nanocomposite coatings at ambient temperature. Thin Solid Films 534, 231 (2013)

    ADS  Google Scholar 

  28. W. Li, S. Ji, K. Qian, P. Jin, Preparation and characterization of VO2 (M)–SnO2 thermochromic films for application as energy-saving smart coatings. J. Colloid Interface Sci. 456, 166 (2015)

    ADS  Google Scholar 

  29. K.S. Karimov, M.M. Tahir, M. Saleem, M.T.S. Chani, A.K. Niaz, Temperature sensor based on composite film of vanadium complex (VO2 (3-fl)) and CNT. JOS 7, 073004 (2015)

    Google Scholar 

  30. N.B. Aetukuri, A.X. Gray, M. Drouard, M. Cossale, L. Gao, A.H. Reid, R. Kukreja, H. Ohldag, C.A. Jenkins, E. Arenholz, K.P. Roche, Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy. Nature Phys. 9, 661 (2013)

    ADS  Google Scholar 

  31. A. Cavalleri, T. Dekorsy, H.H.W. Chong, J.C. Kieffer, R.W. Schoenlein, Evidence for a structurally-driven insulator-to-metal transition in VO 2: A view from the ultratrafast timescale. Phys. Rev. B 70, 16 (2004)

    Google Scholar 

  32. G.R. Khan, B.A. Bhat, Quantum size effect across semiconductor-to-metal phase transition in vanadium dioxide thin films. IET J. Micro Nano Lett. 10, 607 (2015)

    Google Scholar 

  33. G.R. Khan, K. Asokan, B. Ahmad, Room temperature tunability of Mo-doped VO2 nanofilms across semiconductor to metal phase transition. Thin Solid Films 625, 155 (2017)

    ADS  Google Scholar 

  34. M.C. Bawendi, M.L. Steigerwald, L.E. Brus, The quantum mechanics of larger semiconductor clusters (quantum dots). Ann. Rev. Phys. Chem. 41, 477 (1990)

    ADS  Google Scholar 

  35. S.M. Reimann, M. Manninen, Electronic structure of quantum dots. Rev. Mod. Phys. 74, 1283 (2002)

    ADS  Google Scholar 

  36. F. K. Schulter, A theory of thin metal films: electron density, potentials and work function. Surf. Sci. 55, 427 (1976)

    ADS  Google Scholar 

  37. W.D. Knight, K. Clemenger, W.A. de Heer, W.A. Saunders, M.Y. Chou, M.L. Cohen, Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52, 2141 (1984)

    ADS  Google Scholar 

  38. F. Liu, S.N. Khanna, P. Jena, Quantum size effect on the magnetism of finite systems. Phys. Rev. B 42, 976 (1990)

    ADS  Google Scholar 

  39. https://www.quora.com/What-is-the-difference-between-graphene-and-graphene-quantum-dots

  40. E.A. Sedov, K.P. Riikonen, K.Y. Arutyunov, npj Quantum Mater. 2 18 (2017). (https://doi.org/10.1038/s41535-017-0017-8)]

    Article  ADS  Google Scholar 

  41. X. Zhang, P. Sharma, H.T. Johnson, X. Zhang, M. Gharbi,. P. Sharma, H.T. Johnson, Quantum confinement induced strain in quantum dots. Phys. Rev. B 75(2007), 155318 Quantum field induced strains in nanostructures and prospects for optical actuation, Int. J. Solids Struct. 46 3810 (2009)

    MATH  Google Scholar 

  42. L. Whittaker, C. Jaye, Z. Fu, D.A. Fischer, S. Banerjee, Depressed phase transition in solution-grown VO2 nanostructures. J. Am. Chem. Soc. 131, 8884 (2009)

    Google Scholar 

  43. N. Sommer, Jürgen Hüpkes, J. Rau, U., Field Emission at Grain Boundaries: Modeling the Conductivity in Highly Doped Polycrystalline Semiconductors. Phys. Rev. Appl. 5, 024009 (2016)

    ADS  Google Scholar 

  44. M. Gatti, F. Bruneval, V. Olevano, L. Reining, Understanding correlations in vanadium dioxide from first principles. Phys. Rev. Lett. 99, 266402 (2007)

    ADS  Google Scholar 

  45. C.N. Berglund, H.J. Guggenheim, Electronic Properties of VO2 near the Semiconductor- Metal Transition. Phys. Rev. 185, 1022 (1969)

    ADS  Google Scholar 

  46. C. Wu, F. Feng, J. Feng, J. Dai, L. Peng, J. Zhao, Y. Jinlong, C. Yang, S. Cheng, W. Ziyu, Y. Xie, Hydrogen-incorporation stabilization of metallic VO2 (R) phase to room temperature, displaying promising low-temperature thermoelectric effect. J. Am. Chem. 133, 13798 (2011)

    Google Scholar 

  47. J. Cao, W. Fan, H. Zheng, J. Wu, Thermoelectric Effect across the Metal – Insulator Domain Walls in VO2 Microbeams. Nano Lett. 9, 4001 (2009)

    ADS  Google Scholar 

  48. D. Fu, K. Liu, T. Tao, K. Lo, C. Cheng, B. Liu, R. Zhang, H.A. Bechtel, J. Wu, Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films. J. App. Phys. 113, 043707 (2013)

    ADS  Google Scholar 

  49. J. Mao, Z. Liu, Z. Ren, Size effect in thermoelectric materials. npj Quantum Mater. 1, 16028 (2016)

    Google Scholar 

  50. W.H. Rosevear, W. Paul, Hall Effect in VO2 near the Semiconductor-to-Metal Transition. Phys. Rev. B 7, 2109 (1973)

    ADS  Google Scholar 

  51. I. Kitahiro, T. Ohashi, A. Watanabe, Hall effect of vanadium dioxide powder. J. Phys. Soc. Jpn. 21, 2422 (1966)

    ADS  Google Scholar 

  52. D.H. Hensler, Transport properties of sputtered vanadium dioxide thin films. J. Appl. Phys. 39, 2354 (1968)

    ADS  Google Scholar 

  53. C.C.Y. Kwan, C.H. Griffiths, H.K. Eastwood, Transport and structural properties of VO2 films. App. Phys. Lett. 20, 93 (1972)

    ADS  Google Scholar 

  54. D. Ruzmetov, D. Heiman, B.B. Claflin, V. Narayanamurti, S. Ramanathan, Hall carrier density and magnetoresistance measurements in thin-film vanadium dioxide across the metal-insulator transition. Phys. Rev. B 79, 153107 (2009)

    ADS  Google Scholar 

  55. J. Dai, X. Wang, S. He, Y. Huang, X. Yi, Low temperature fabrication of VOx thin films for uncooled IR detectors by direct current reactive magnetron sputtering method. Infrared Phys. Technol. 51, 287 (2008)

    ADS  Google Scholar 

  56. Y.H. Kim, H.I. Lee, Redox property of vanadium oxide and its behavior in catalytic oxidation. Bull. Korean Chem. Soc. 20, 1457 (1999)

    Google Scholar 

  57. O. Monfort, T. Roch, L. Satrapinskyy, M. Gregor, T. Plecenik, A. Plecenik, G. Plesch, Reduction of V2O5 thin films deposited by aqueous sol–gel method to VO2(B) and investigation of its photocatalytic activity. Appl. Surf. Sci. 322, 21 (2014)

    ADS  Google Scholar 

  58. Z. Lu, M.D. Levi, G. Salitra, Y. Gofer, E. Levi, Aurbach D., Basic electroanalytical characterization of lithium insertion into thin, well-crystallized V2O5 films. J. Elec. Chem. 491, 211 (2000)

    Google Scholar 

  59. B.G. Chae, D.H. Youn, H.T. Kim, S.Y. Maeng, K.Y. Kang, Fabrication and electrical properties of pure VO2 phase films. J. Korean Phys. Soc. 44, 884 (2004)

    Google Scholar 

  60. E.A. Outkina, A.I. Vorobyova, A.A. Khodin, Formation and properties of thin-film composites vanadium oxide/porous anodic aluminum oxide. Russ. Microelectron. 39, 273 (2010)

    Google Scholar 

  61. M. Xu, J. Wang, L. Li, C. Wu, Y. Zhao, H. Zuo, Preparation of thermochromic vanadium dioxide thin films by pulsed-magnetron sputtering. Appl. Mech. Mater. 377, 227 (2013)

    Google Scholar 

  62. M.E. Warwick, I. Ridley, R. Binions, Thermochromic vanadium dioxide thin films prepared by electric field assisted atmospheric pressure chemical vapour deposition for intelligent glazing application and their energy demand reduction properties. Solar Energy Mat. Solar Cells 157, 686 (2016)

    Google Scholar 

  63. N. Wang, S. Magdassi, D. Mandler, Y. Long, Simple sol–gel process and one-step annealing of vanadium dioxide thin films: synthesis and thermochromic properties. Thin Solid Films 534, 594 (2013)

    ADS  Google Scholar 

  64. D.A. Vinichenko, V.P. Zlomanov, V.A. Vasil’ev, D.S. Seregin, O.Y. Berezina, Synthesis of vanadium dioxide films by a modified sol–gel process. Inorg. Mater. 47, 279 (2011)

    Google Scholar 

  65. Y. Dachuan, X. Niankan, Z. Jingyu, Z. Xiulin, High quality vanadium dioxide films prepared by an inorganic sol–gel method. Mater. Res. Bull. 31, 335 (1996)

    Google Scholar 

  66. X. Ren, Y. Jiang, P. Zhang, J. Liu, Q. Zhang, Preparation and electrochemical properties of V2O5 submicron-belts synthesized by a sol–gel H2O2 route. J. Sol–Gel Sci. Technol. 51, 133 (2009)

    Google Scholar 

  67. I. Takahashi, M. Hibino, T. Kudo, Thermochromic V1 – xWxO2 thin films prepared by wet coating using polyvanadate solutions, Japan. J. Appl. Phys. 35, L438 (1996)

    ADS  Google Scholar 

  68. D. Shi, X. Wen, Bioceramic processing in introduction to biomaterials, (Ch.3, Tsinghua University Press/World Scientific, 2006). p. 38

  69. Y. Ningyi, L. Jinhua, L. Chenlu, Switching property of sol-gel vanadium oxide thin films Proc. SPIE, Adv. Photonic Sens. Applica. II,4596 16 (2001)

    Google Scholar 

  70. F.L. Souza, K.P. Lopes, E. Longo, E.R. Leite, The influence of the film thickness of nanostructured a-Fe2O3 on water photooxidation. Phys. Chem. Chem. Phys. 11, 1215 (2009)

    Google Scholar 

  71. S. Deki, Y. Aoi, A. Kajinami, A novel wet process for the preparation of vanadium dioxide thin film. J. Mat. Sci. 32, 4269 (1997)

    ADS  Google Scholar 

  72. D.P. Partlow, S.R. Gurkovich, K.C. Radford, L.J. Denes, Switchable vanadium oxide films by a sol-gel process. J. Appl. Phys. 70, 443 (1991)

    ADS  Google Scholar 

  73. B. Alonso, J. Livage, Synthesis of vanadium oxide gels from peroxovanadic acid solutions: a 51 V NMR study. J. Solid State Chem. 148, 16 (1999)

    ADS  Google Scholar 

  74. L. Jinhua, Y. Ningyi, X. Jiansheng, Infrared Detector Materials and Devices, SPIE, 5564 140 (2004)

    Google Scholar 

  75. M. Yamashita, T. Nishii, H. Mizutani, Resistivity measurement by dual-configuration four-probe method, Japan. J. Appl. Phys. 42, 695 (2003)

    ADS  Google Scholar 

  76. D.K. Schroder, Semiconductor Material and Device Characterization, 2nd edn. (Wiley Interscience Publication, New York, 1998)

    Google Scholar 

  77. http://www.ni.com/labview

  78. L.J. van der Pauw, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Repts 13, 1 (1958)

    Google Scholar 

  79. J. Yan, W. Huang, Y. Zhang, X. Liu, M. Tu, Characterization of preferred orientated vanadium dioxide film on muscovite (001) substrate. Phys. Status Solidi A 205, 2409 (2008)

    ADS  Google Scholar 

  80. A. Gupta, R. Singhal, J. Narayan, D.K. Avasthi, Electronic excitation induced controlled modifications of semiconductor-to-metal transition in epitaxial VO2 thin films. J. Mater. Res. 26, 2901 (2011)

    ADS  Google Scholar 

  81. A. Gaffoor, D.R. Kumar, G. Aravind, C.A. Lincoln, D. Ravinder, Thermoelectric power studies of Ni-Co nanoferrites synthesized by citrate-gel auto combustion method. IOSR J. Appl. Phys. 7, 1 (2015)

    Google Scholar 

  82. T. Tripathi, M. Bala, K. Asokan, An experimental setup for the simultaneous measurement of thermoelectric power of two samples from 77 K to 500 K, Rev. Sci. Instr. 85, 085115 (2014)

    ADS  Google Scholar 

  83. C.C. Lin, Y. Hu, J.S. Liu, Electrical conducting behavior of W-doped VO2 thin films/ La0.5Sr0.5CoO3 heterostructure. Int. J. Chem. Eng. Appl. 4, 54 (2013)

    Google Scholar 

  84. Y. Zhou, S. Ramanathan, GaN/VO2 heteroepitaxial pn junctions: Band offset and minority carrier dynamics. J. Appl. Phys. 113, 213703 (2013)

    ADS  Google Scholar 

  85. A. Fujimori, I. Hase, H. Namatame, Y. Fujishima, Evolution of the spectral function in Mott-Hubbard systems with d 1 configuration. Phys. Rev. Lett. 69, 1796 (1992)

    ADS  Google Scholar 

  86. M.J. Rozenberg, G. Kotliar, H. Kajueter, G.A. Thomas, D.H. Rapkine, J.M. Honig, P. Metcalf, Optical conductivity in Mott-Hubbard Systems. Phys. Rev. Lett. 75 105 (1995)

    ADS  Google Scholar 

  87. R.M. Wentzcovitch, W.W. Schulz, P.B. Allen, VO2: Peierls or Mott-Hubbard? A view from band theory. Phys. Rev. Lett. 72, 3389 (1994)

    ADS  Google Scholar 

  88. A. Liebsch, H. Ishida, G. Bihlmayer, Coulomb correlations and orbital polarization in the metal-insulator transition of VO2,Phys.Rev.B.,71(2005) 085109

  89. S. Biermann, A. Poteryaev, A.I. Lichtenstein, A. Georges, Dynamical singlets and correlation-assisted Peierls transition in VO2. Phys. Rev. Lett. 94, 026404 (2005)

    ADS  Google Scholar 

  90. M.W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S.V. Streltsov, M.A. Korotin, V.I. Anisimov, H.H. Hsieh, H.J. Lin, C.T. Chen, D.I. Khomskii, Orbital-assisted metal-insulator transition in VO2. Phys. Rev. Lett. 95, 196404 (2005)

    ADS  Google Scholar 

  91. M.M. Qazilbash, K.S. Burch, D. Whisler, B.G. Shrekenhamer, H. Chae, T. Kim, D.N. Basov, Correlated metallic state of vanadium dioxide. Phys. Rev. B 74, 205118 (2006)

    ADS  Google Scholar 

  92. J. Wei, Z. Wang, W. Chen, H. Cobden, New aspects of the metal–insulator transition in single-domain vanadium dioxide nanobeam. Nat. Nanotechnol 4, 420 (2009)

    ADS  Google Scholar 

  93. V. Eyert, VO2: a novel view from band theory. Phys. Rev. Lett. 107, 016401 (2011)

    ADS  Google Scholar 

  94. C.X. Wang, G.W. Yang, Thermodynamics of metastable phase nucleation at the nanoscale. Mater. Sci. Eng. R 49, 157 (2005)

    Google Scholar 

  95. R. Lopez, L.A. Boatner, T.E. Haynes, Enhanced hysteresis in the semiconductor-to metal phase transition of VO2 precipitates formed in SiO2 by ion implantation. Appl. Phys. Lett. 79, 3161 (2001)

    ADS  Google Scholar 

  96. K. Appavoo, D.Y. Lei, Y. Sonnefraud, B. Wang, S.T. Pantelides, S.A. Maier, Haglund Jr, R.F., Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy. Nano Lett. 12, 780 (2012)

    ADS  Google Scholar 

  97. J. Narayan, V.M.P. Bhosle, Phase transition and critical issues in structure–property correlations of vanadium oxide. Appl. Phys 100, 103524 (2006)

    Google Scholar 

  98. J. Martin, L. Wang, L. Chen, G.S. Nolas, Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanostructures. Phys. Rev.B 79, 115311 (2009)

    ADS  Google Scholar 

  99. E.I. Rogacheva, A.V. Budnik, A.Y. Sipatov, O.N. Nashchekina, M.S. Dresselhaus, Thickness dependent quantum oscillations of transport properties in topological insulator Bi2Te3 thin films. Appl. Phys. Lett. 106, 053103 (2015)

    ADS  Google Scholar 

  100. L. Hicks, T. Harman, X. Sun, M. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B: Cond. Mater. Phys 53, R10493 (1996)

    ADS  Google Scholar 

  101. M. Bala, S. Gupta, T.S. Tripathi, S. Varma, S.K. Tripathi, K. Asokan, D.K. Avasthi, Enhancement of thermoelectric power of PbTe: Ag nanocomposite thin films. RSC Adv 5, 25887 (2015)

    Google Scholar 

  102. B. Paul, A. Kumar, P. Banerji, Embedded Ag-rich nanodots in PbTe: enhancement of thermoelectric properties through energy filtering of the carriers. J. Appl. Phys 108, 064322 (2010)

    ADS  Google Scholar 

  103. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, P. Gogna, New Directions for Low-Dimensional Thermoelectric Materials, Adv. Mater. 19 1043 (2007)

    Google Scholar 

  104. https://en.wikipedia.org/wiki/Hall_effect

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, G.R., Ahmad, B. Effect of quantum confinement on thermoelectric properties of vanadium dioxide nanofilms. Appl. Phys. A 123, 795 (2017). https://doi.org/10.1007/s00339-017-1363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1363-x

Navigation