Applied Physics A

, 123:751 | Cite as

Effects of a power and photon energy of incident light on near-field etching properties

  • T. YatsuiEmail author
  • H. Saito
  • K. Nishioka
  • B. Leuschel
  • O. Soppera
  • K. Nobusada
Part of the following topical collections:
  1. New Paradigms in Nano-optics and Nano-photonics


We developed a near-field etching technique for realizing an ultra-flat surfaces of various materials and structures. To elucidate the near-field etching properties, we have investigated the effects of power and the photon energy of the incident light. First, we established theoretically that an optical near-field with photon energy lower than the absorption edge of the molecules can induce molecular vibrations. We used nanodiamonds to study the power dependence of the near-field etching properties. From the topological changes of the nanodiamonds, we confirmed the linear-dependence of the etching volume with the incident power. Furthermore, we studied the photon energy dependence using TiO2 nanostriped structures, which revealed that a lower photon energy results in a lower etching rate.



The authors wish to express special thanks to Mr. Maiku Yamaguchi (University of Tokyo) for active support and discussion. We thank Mrs. Etsuko Ota (University of Tokyo) for the AFM measurements. This work was partially supported by a MEXT Grant-in-Aid for Scientific Research (B) (No. 26286022, 17H03101), a MEXT Grant-in-Aid for Scientific Research (A) (17H01262), a MEXT Grant-in-Aid for Challenging Research (Exploratory) (No. 17K20091), a MEXT Nanotechnology Platform (No.12024046), Japan (JSPS)-Korea (NRF) Bilateral Program, Japan (JSPS)-France (MAEDI) Bilateral Program SAKURA, the JSPS Core-to-Core Program (A. Advanced Research Networks), JST CREST (No. JPMJCR16N5), MEXT as a social and scientific priority issue (creation of new functional devices and high-performance materials to support next-generation industries) to be tackled using the post-K computer (ID: hp 160204), Nippon Sheet Glass Foundation for Materials Science and Engineering, Iketani Science and Technology Foundation, and Asahi Glass Foundation.


  1. 1.
    T-a. Yano, P. Verma, Y. Saito, T. Ichimura, S. Kawata, Pressure-assisted tip-enhanced Raman Imaging at a resolution of a few nanometres. Nat. Photon. 3, 473–477 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    N. Fang, H. Lee, C. Sun, X. Zhang, Sub diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    T. Yatsui, M. Yamaguchi, K. Nobusada, Nano-scale chemical reactions based on non-uniform optical near-fields and their applications. Prog. Quantum Electron. 55, 166–194 (2017)Google Scholar
  4. 4.
    M. Yamaguchi, K. Nobusada, Photodissociation path in H2 + induced by nonuniform optical near fields: two-step excitation via vibrationally excited states. Phys. Rev. A 93, 023416 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    M. Yamaguchi, K. Nobusada, T. Kawazoe, T. Yatsui, Two-photon absorption induced by electric field gradient of optical near-field and its application to photolithography. Appl. Phys. Lett. 106, 191103 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    M. Yamaguchi, K. Nobusada, Indirect interband transition induced by optical near fields with large wave numbers. Phys. Rev. B 93, 195111 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    T. Yatsui, T. Tsuboi, M. Yamaguchi, K. Nobusada, S. Tojo, F. Stehlin, O. Soppera, D. Bloch, Optically controlled magnetic-field etching on the nano-scale. Light Sci. Appl. 5, e16054 (2016)CrossRefGoogle Scholar
  8. 8.
    T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Realization of an ultra-flat silica surface with angstrom-scale average roughness using nonadiabatic optical near-field etching. Appl. Phys. B 93, 55–57 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    T. Yatsui, W. Nomura, F. Stehlin, O. Soppera, M. Naruse, M. Ohtsu, Challenges in realizing ultraflat materials surfaces. Beilstein J. Nanotechnol. 4, 875–885 (2013)CrossRefGoogle Scholar
  10. 10.
    E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    M.A.L. Marques, E.K.U. Gross, Time-dependent density, functional theory. Annu. Rev. Phys. Chem. 55, 427–455 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    K. Taguchi, J. Haruyama, K. Watanabe, Laser-driven molecular dissociation: time-dependent density functional theory and molecular dynamics simulations. J. Phys. Soc. Jpn. 78, 094707 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    J.D. Jackson, Classical electrodynamics. Wiley, New York (1962)zbMATHGoogle Scholar
  14. 14.
    D. Keilin, E.F. Hartree, Absorption spectrum of oxygen. Nature 165, 543–544 (1950)ADSCrossRefGoogle Scholar
  15. 15.
    Y.Y. Hui et al., Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt. Exp. 18, 5896–5905 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    T. Kawazoe, K. Kobayashi, S. Takubo, M. Ohtsu, Nonadiabatic photodissociation process using an optical near field. J. Chem. Phys. 122, 024715 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    F. Stehlin, F. Wieder, A. Spangenberg, J.-M. Le Meins, O. Soppera, Room-temperature preparation of metal-oxide nanostructures by DUV lithography from metal-oxo clusters. J. Mater. Chem. C 2, 277–285 (2014)CrossRefGoogle Scholar
  18. 18.
    Z. Farooq, D.A. Chestakov, B. Yan, G.C. Groenenboom, W.J. van der Zande, D.H. Parker, Photodissociation of singlet oxygen in the UV region. Phys. Chem. Chem. Phys. 16, 3305–3316 (2014)CrossRefGoogle Scholar
  19. 19.
    F.J. Brandenburg, T. Okamoto, H. Saito, B. Leuschel, O. Soppera, T. Yatsui, Surface improvement of organic photoresists using a near-field-dependent etching method. Beilstein J. Nanotechnol. 8, 784–788 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • T. Yatsui
    • 1
    Email author
  • H. Saito
    • 1
  • K. Nishioka
    • 1
  • B. Leuschel
    • 2
  • O. Soppera
    • 2
  • K. Nobusada
    • 3
  1. 1.School of EngineeringUniversity of TokyoBunkyo-ku, TokyoJapan
  2. 2.Institut de Sciences des Materiaux de Mulhouse (IS2M)CNRS UMR 7361Mulhouse CedexFrance
  3. 3.Department of Theoretical and Computational Molecular ScienceInstitute for Molecular ScienceMyodaiji, OkazakiJapan

Personalised recommendations