Skip to main content

Advertisement

Log in

Stress-induced birefringence control in femtosecond laser glass welding

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Glass welding by femtosecond laser pulses causes microscopic structural modifications, affecting the refractive index due to residual stress. Locally induced birefringence is studied by photoelasticimetry using a polarized light microscope. The study is performed on borosilicate thin glass plates using an industrial femtosecond laser generating 300 fs pulses at 500 kHz, with a 100 mm focusing length F-theta lens allowing fast welding. For low-energy deposition, the principal birefringence axes are determined to be homogenous along the seam and perpendicular and parallel to the laser scanning direction. Tensile stress is induced in the laser scanning direction by the welding seams. The induced birefringence is determined to be equivalent for in-volume irradiated track and welding seams. An inhomogeneity of the birefringence within the seam is observed for the first time at high-energy deposition. The distribution of the birefringence can be controlled with the laser scanning patterns. The amount of residual stress is measured by compensating the local birefringence. The birefringence \(\Delta ~n\) is estimated at \(2.4~\times ~10^{-4}\), corresponding to a residual stress amount around 59 MPa. The influence of the welding geometry is also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Hülsenberg, A. Harnisch, A. Bismarck, in Microstructuring of glasses, ed. By D. Hlsenberg, A. Harnisch (Springer Ser. Mater. Science, 2008), p. 263

  2. T. Tamaki, W. Watanabe, J. Nishii, K. Itoh, Jpn. J. Appl. Phys. 44, 687 (2005)

    Article  ADS  Google Scholar 

  3. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, J. Nishii, Appl. Phys. Lett. 89, 021106 (2006)

    Article  ADS  Google Scholar 

  4. T. Tamaki, W. Watanabe, K. Itoh, Opt. Express 14, 10460 (2006)

    Article  ADS  Google Scholar 

  5. S. Richter, F. Zimmermann, S. Döring, A. Tünnermann, S. Nolte, Appl. Phys. A, Mater. Sci. Process. 110, 9 (2013)

  6. K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, M. Schmidt, Appl. Opt. 50, 1941 (2011)

    Article  ADS  Google Scholar 

  7. G. Zhang, G. Cheng, Appl. Opt. 54, 8957 (2015)

    Article  ADS  Google Scholar 

  8. D. Hélie, F. Lacroix, R. Valle, J. Laser Micro/Nanoeng. 7, 284 (2012)

    Article  Google Scholar 

  9. C.B. Schaffer, A. Brodeur, E. Mazur, Meas. Sci. Technol. 12, 1784 (2001)

    Article  ADS  Google Scholar 

  10. C. B. Schaffer, J. F. Garcia, E. Mazur, Appl. Phys. A, Mater. Sci. Process. 76, 351 (2003)

  11. V.R. Bhardwaj, P.B. Corkum, D.M. Rayner, C. Hnatovski, E. Simova, R.S. Taylor, Opt. Lett. 29, 1312 (2004)

    Article  ADS  Google Scholar 

  12. Y. Dai, B.-K. Yu, B. Lu, J.-R. Qiu, X.N. Yan, X.W. Jiang, C.S. Zhu, Chin. Phys. Lett. 22, 2626 (2005)

  13. D. Lorenc, M. Aranyosiova, R. Buczynski, R. Stepien, I. Bugar, A. Vincze, D. Velic, Appl. Phys. B 93, 531 (2008)

    Article  ADS  Google Scholar 

  14. S.C. Eaton, G. Cerullo, R. Osellame, in Femtosecond Laser Micromachining, ed. by R. Osellame, G. Cerullo, R. Ramponi (Springer, Berlin Heidelberg, 2012), p. 3

  15. P.C. Anderson, A.K. Varshneya, J. Non-Cryst, Solids 168, 125 (1994)

    Google Scholar 

  16. K. Ramesh, V. Ramakrishnan, Opt. Laser Eng. 87, 59 (2016)

    Article  Google Scholar 

  17. T.J. Holmquist, A.A. Wereszczak, Int. J. Appl. Glass Sci. 5, 345 (2014)

    Article  Google Scholar 

  18. S. Richter, F. Zimmermann, A. Tünnermann, S. Nolte, Opt. Laser Technol. 83, 59 (2016)

    Article  ADS  Google Scholar 

  19. F. Zimmermann, S. Richter, S. Döring, A. Tünnermann, S. Nolte, Appl. Opt. 52, 1149 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gstalter.

Additional information

In the framework of LaserWeldCut Project funded by INSTITUT CARNOT MICA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gstalter, M., Chabrol, G., Bahouka, A. et al. Stress-induced birefringence control in femtosecond laser glass welding. Appl. Phys. A 123, 714 (2017). https://doi.org/10.1007/s00339-017-1324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1324-4

Keywords

Navigation