Skip to main content
Log in

Photonic jet: direct micro-peak machining

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the first evidence of direct micro-peak machining using a photonic jet (PJ) with nanosecond laser pulses. PJ is a high-concentrated propagative light beam with a full width at half maximum (FWHM) smaller than the diffraction limit. In our case, PJs are generated with a shaped optical fiber tip. Micro-peaks with a FWHM of around 1 \(\upmu\)m, a height until 590 nm and an apex radius of 14 nm, were repeatability achieved on a silicon wafer. The experiments have been carried out in ambient air using a 100/140 multimode silica fiber with a shaped tip along with a 35 kHz pulsed laser emitting 100 ns pulses at 1064 nm. This study shows that the phenomenon occurs only at low energies, just under the ablation threshold. Bulk material appears to have moved around to achieve the peaks in a self-organized process. We hypothesize that the matter was melted and not vaporized; hydrodynamic flow of molten material governed by surface-tension forces may be the causes. This surface modification has many applications. For example, this paper reports on the decrease of wettability of a textured silicon wafer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Abdurrochman, S. Lecler, F. Mermet, B.Y. Tumbelaka, B. Serio, J. Fontaine, Appl. Opt. 53(31), 7202 (2014). doi:10.1364/AO.53.007202

    Article  ADS  Google Scholar 

  2. H.J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, J. Boneberg, J. Microsc. 202(1), 129 (2001). doi:10.1046/j.1365-2818.2001.00876.x

    Article  MathSciNet  Google Scholar 

  3. W. Wu, A. Katsnelson, O.G. Memis, H. Mohseni, Nanotechnology 18(48), 485302 (2007). doi:10.1088/0957-4484/18/48/485302

    Article  Google Scholar 

  4. W. Guo, Z.B. Wang, L. Li, D.J. Whitehead, B.S. Lukyanchuk, Z. Liu, Appl. Phys. Lett. 90(24), 243101 (2007). doi:10.1063/1.2748035

    Article  ADS  Google Scholar 

  5. D. Grojo, L. Charmasson, A. Pereira, M. Sentis, P. Delaporte, J. Nanosci. Nanotechnol. 11(10), 9129 (2011). doi:10.1166/jnn.2011.4295

    Article  Google Scholar 

  6. E. Mcleod, C.B. Arnold, Nat. Nanotechnol. 3(7), 413 (2008). doi:10.1038/nnano.2008.150

    Article  Google Scholar 

  7. J. Zelgowski, A. Abdurrochman, F. Mermet, P. Pfeiffer, J. Fontaine, S. Lecler, Opt. Lett. 41(9), 2073 (2016). doi:10.1364/OL.41.002073

    Article  ADS  Google Scholar 

  8. R. Pierron, S. Lecler, J. Zelgowski, P. Pfeiffer, F. Mermet, J. Fontaine, Appl. Surf. Sci. 418, Part B, 452 (2017). doi:10.1016/j.apsusc.2017.01.277

  9. R. Pierron, J. Zelgowski, P. Pfeiffer, J. Fontaine, S. Lecler, Opt. Lett. 42(14) (2017)

  10. Z. Chen, A. Taflove, V. Backman, Opt. Express 12(7), 1214 (2004). doi:10.1364/OPEX.12.001214

    Article  ADS  Google Scholar 

  11. S. Lecler, Y. Takakura, P. Meyrueis, Opt. Lett. 30(19), 2641 (2005). doi:10.1364/OL.30.002641

    Article  ADS  Google Scholar 

  12. A.V. Itagi, W.A. Challener, J. Opt. Soc. Am. A 22(12), 2847 (2005). doi:10.1364/JOSAA.22.002847

    Article  ADS  Google Scholar 

  13. X. Li, Z. Chen, A. Taflove, V. Backman, Opt. Express 13(2), 526 (2005). doi:10.1364/OPEX.13.000526

    Article  ADS  Google Scholar 

  14. A. Heifetz, S.C. Kong, A.V. Sahakian, A. Taflove, V. Backman, J. Comput. Theor. Nanosci. 6(9), 1979 (2009). doi:10.1166/jctn.2009.1254

    Article  Google Scholar 

  15. T.H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73(12), 1673 (1998). doi:10.1063/1.122241

    Article  ADS  Google Scholar 

  16. D.S. Ivanov, B. Rethfeld, G.M. O’Connor, T.J. Glynn, A.N. Volkov, L.V. Zhigilei, Appl. Phys. A 92(4), 791 (2008). doi:10.1007/s00339-008-4712-y

    Article  ADS  Google Scholar 

  17. A.I. Kuznetsov, J. Koch, B.N. Chichkov, Appl. Phys. A 94(2), 221 (2009). doi:10.1007/s00339-008-4859-6

    Article  ADS  Google Scholar 

  18. C. Unger, J. Koch, L. Overmeyer, B.N. Chichkov, Opt. Express 20(22), 24864 (2012). doi:10.1364/OE.20.024864

    Article  ADS  Google Scholar 

  19. J. Zhu, W. Li, M. Zhao, G. Yin, X. Chen, D. Chen, L. Zhao 5629, 276–283 (2005). doi:10.1117/12.571965

  20. A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Appl. Phys. A 106(3), 479 (2012). doi:10.1007/s00339-011-6747-8

    Article  ADS  Google Scholar 

  21. J.P. Moening, S.S. Thanawala, D.G. Georgiev, Appl. Phys. A 95(3), 635 (2009). doi:10.1007/s00339-009-5166-6

    Article  ADS  Google Scholar 

  22. J.P. Moening, D.G. Georgiev, J.G. Lawrence, J. Appl. Phys. 109(1), 014304 (2011). doi:10.1063/1.3524367

    Article  ADS  Google Scholar 

  23. C. Borsuk, Leslie M. (Los Alamitos. Alternating current arc for lensing system and method of using same (1988). http://www.freepatentsonline.com/4743283.html

  24. B.K. Nayak, P.O. Caffrey, C.R. Speck, M.C. Gupta, Appl. Surf. Sci. 266, 27 (2013). doi:10.1016/j.apsusc.2012.11.052

    Article  ADS  Google Scholar 

  25. C. Hairaye, F. Mermet, T. Engel, P.C. Montgomery, J. Fontaine, J. Phys. Conf. Ser. 558(1), 012063 (2014)

    Article  Google Scholar 

  26. T. Young, Philos. Trans. R. Soc. Lond. 95, 65 (1805). doi:10.1098/rstl.1805.0005

    Article  Google Scholar 

  27. R.N. Wenzel, Industrial & Engineering Chemistry 28(8), 988 (1936). doi:10.1021/ie50320a024

  28. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944). doi:10.1039/TF9444000546

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Camille Hairaye (ICube Laboratory, France) for her technical assistance in the use of the characterization system of wettability.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Pierron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierron, R., Pfeiffer, P., Chabrol, G. et al. Photonic jet: direct micro-peak machining. Appl. Phys. A 123, 686 (2017). https://doi.org/10.1007/s00339-017-1319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1319-1

Navigation