Charge transport studies on Si nanopillars for photodetectors fabricated using vapor phase metal-assisted chemical etching


Si nanopillars (SiNPLs) were fabricated using a novel vapor phase metal-assisted chemical etching (V-Mace) and nanosphere lithography. The temperature dependent current–voltage (I–V) characteristics have been studied over a broad temperature range 170–360 K. The SiNPLs show a Schottky diode-like behavior at a temperature below 300 K and the rectification (about two orders of magnitude) is more prominent at temperature < 210 K. The electrical properties are discussed in detail using Cheung’s and Norde methods, and the Schottky diode parameters, such as barrier height, ideality factor, series resistance, are carefully figured out and compared with different methods. Moreover, the light sensitivity of the SiNPLs has been studied using I–V characteristics in dark and under the illumination of white light and UV light. The SiNPLs show fast response to the white light and UV light (response time of 0.18 and 0.26 s) under reverse bias condition and the mechanism explained using band diagram. The ratio of photo-to-dark current shows a peak value of 9.8 and 6.9 for white light and UV light, respectively. The Si nanopillars exhibit reflectance < 4% over the wavelength region 250–800 nm with a minimum reflectance of 2.13% for the optimized sample. The superior light absorption of the SiNPLs induced fast response in the I–V characteristics under UV light and white light. The work function of the SiNPLs in dark and under illumination has been also studied using Kelvin probe to confirm the light sensitivity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163–168 (2008)

    ADS  Article  Google Scholar 

  2. 2.

    V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Small 2, 85–88 (2006)

    Article  Google Scholar 

  3. 3.

    Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Nano Lett. 8, 4191–4195 (2008)

    ADS  Article  Google Scholar 

  4. 4.

    N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, Adv. Mater. 26, 2137–2184 (2014)

    Article  Google Scholar 

  5. 5.

    B. Kiraly, S. Yang, T. Huang, J. Nanotechnol. 24, 245704–245705 (2013)

    ADS  Article  Google Scholar 

  6. 6.

    J. Bae, H. Kim, X.M. Zhang, C.H. Dang, Y. Zhang, Y.J. Choi, A. Nurmikko, Z.L. Wang, Nanotechnology 21, 095502–095505 (2010)

    ADS  Article  Google Scholar 

  7. 7.

    P. Karadan, A.A. Anappara, V.H.S. Moorthy, N. Chandrabhas, H.C. Barshilia, RSC Adv. 6, 109157–109170 (2016)

    Article  Google Scholar 

  8. 8.

    L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, J. Nanophoton. 1, 13552–13555 (2007)

    Article  Google Scholar 

  9. 9.

    N.P. Koboyashi, S.Y. Wang, C. Santori, R.S. Williams, Appl. Phys. A Mater. Sci. Process. 85, 1–6 (2006)

    ADS  Article  Google Scholar 

  10. 10.

    Y.L. Chueh, Z.Y. Fan, K. Takei, H. Ko, R. Kapadia, A.A. Rathore, N. Miller, K. Yu, M. Wu, E.E. Haller, A. Javey, Nano Lett. 10, 520–523 (2010)

    ADS  Article  Google Scholar 

  11. 11.

    A. Gin, B. Movaghar, M. Razeghi, G.J. Brown, Nanotechnology 16, 1814–1820 (2005)

    ADS  Article  Google Scholar 

  12. 12.

    W. Xu, C.S. Ozkan, Nano Lett. 8, 398–404 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    R. Ghosh, P.K. Giri, K. Imakita, M. Fujii, Nanotechnology 25, 045703–045705 (2014)

    ADS  Article  Google Scholar 

  14. 14.

    X. Zhao, C.M. Wei, L. Yang, M.Y. Chou, Phys. Rev. Lett. 92, 236805-4 (2004)

    ADS  Google Scholar 

  15. 15.

    S. Grego, K.H. Gilchrist, J.Y. Kim, M.K. Kwon, M.S. Islam, Proc. SPIE 7406, 74060–74069 (2009)

    ADS  Article  Google Scholar 

  16. 16.

    V. Schmidt, J.V. Witteman, S. Senz, U. Gosele, Adv. Mater. 21, 2681–2702 (2009)

    Article  Google Scholar 

  17. 17.

    V. Gowrishankar, S.R. Scully, A.T. Chan, M.D. McGehee, Q. Wang, H.M.J. Branz, Appl. Phys. 103, 064511–064511 (2008)

    Article  Google Scholar 

  18. 18.

    W. Wei, X.Y. Bao, C. Soci, Y. Ding, Z.L. Wang, D. Wang, Nano Lett. 9, 2926–2934 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    C.J. Novotny, E.T. Yu, P.K.L. Yu, Nano Lett. 8, 775–779 (2008)

    ADS  Article  Google Scholar 

  20. 20.

    C. Kung, W.E. Van Der Veer, F. Yang, K.C. Donavan, R.M. Penner, Nano Lett. 10, 1481–1485 (2010)

    ADS  Article  Google Scholar 

  21. 21.

    A.D. Bartolomeo, F. Giubileo, G.L. Go, L. Lemmo, N. Martucciello, G. Niu, M. Fraschke, O. Skibitzki. T. Schroeder, G. Lupina, 2D Mater. 4, 01024–01011 (2017)

    Article  Google Scholar 

  22. 22.

    D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W.P. Hu, W. Chen, Small 37, 4859–4836 (2015)

  23. 23.

    X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, Y. Fang, Small 12, 565–601 (2016)

    Google Scholar 

  24. 24.

    T. Jiao, D. Wei, J. Liu, W. Sun, S. Jia, W. Zhang, Y. Feng, H. Shi, C. Du, RSC Adv. 5, 73202–73206 (2015)

    Article  Google Scholar 

  25. 25.

    Y. Wang, V. Schmidt, S. Senz, U. Gosele, Nat. Nanotechnol. 1, 186–189 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    H. Schmid, M.T. Bjork, J. Knoch, H. Riel, W. Riess, P. Rice, T. Topuria, J. Appl. Phys. 103, 024304–024306 (2008)

    ADS  Article  Google Scholar 

  27. 27.

    K. Omar, Y. Al-Douri, A. Ramizy, Z. Hassan, Superlattices Microstruct. 50, 119–127 (2011)

    ADS  Article  Google Scholar 

  28. 28.

    Z. Huang, H. Fang, J. Zhu, Adv. Mater. 19, 744–748 (2007)

    Article  Google Scholar 

  29. 29.

    P. Karadan, S. John, A.A. Anappara, N. Chandrabhas, H.C. Barshilia, Appl. Phys. A 22, 669–674 (2016)

    ADS  Article  Google Scholar 

  30. 30.

    Y. Li, C. Duan, Langmuir 31, 12291–12299 (2015)

    Article  Google Scholar 

  31. 31.

    K.Q. Peng, Z.P. Huang, J. Zhu, Adv. Mater. 16, 73–76 (2004)

    Article  Google Scholar 

  32. 32.

    O.J. Hildreth, D.R. Schmidt, Adv. Funct. Mater. 4, 129–126 (2014)

    Google Scholar 

  33. 33.

    A. Kumar, S. Siddhanta, H.C. Barshilia, Sol. Energy 129, 147–155 (2016)

    ADS  Article  Google Scholar 

  34. 34.

    A. Kumar, H. Chaliyawala, S. Siddhanta, H.C. Barshilia, Sol. Energy Mater. Sol. Cells 145, 432–439 (2015)

    Article  Google Scholar 

  35. 35.

    W.K. Choi, T.H. Liew, M.K. Dawood., H.I. Smith, C.V. Thompson, M.H. Hong, Nano Lett. 8, 3799–3802 (2008)

    ADS  Article  Google Scholar 

  36. 36.

    Z.P. Huang, Y. Wu, H. Fang, J. Zhu, Nanotechnology 17, 3768–3774 (2006)

    ADS  Article  Google Scholar 

  37. 37.

    A. Kumar, S. Samantha, S. Latha, A.K. Debnath, A. Singh, K.P. Muthe, H.C. Barshia, RSC Adv. 7, 4135–4143 (2017)

    Article  Google Scholar 

  38. 38.

    O.Y. Olikh, J. Appl. Phys 118, 024502 (2015)

    ADS  Article  Google Scholar 

  39. 39.

    R. Padma, V.R. Reddy, Adv. Mater. Lett. 5, 31–38 (2014)

    Article  Google Scholar 

  40. 40.

    S. Yilmaz, E. Bacaksiz, I. Polat, Y. Atasoy, Curr. Appl. Phys. 12, 1326–1333 (2012)

    ADS  Article  Google Scholar 

  41. 41.

    G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles (Springer, Berlin, 2003)

    Google Scholar 

  42. 42.

    S. Karatas, S. Altindal, Sol. Stat. Electron. 49, 1052 (2005)

    ADS  Article  Google Scholar 

  43. 43.

    A. Gumus, A. Turut, N. Yalcin, J. Appl. Phys. 91, 245 (2002)

    ADS  Article  Google Scholar 

  44. 44.

    J.H. Werner, H.H. Guttler, J. Appl. Phys. 73, 1315 (1993)

    ADS  Article  Google Scholar 

  45. 45.

    J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522–1533 (1991)

    ADS  Article  Google Scholar 

  46. 46.

    A.R. Arehart, B. Moran, J.S. Speck, J.S. Mishra, S.P. Den, S.A. Baars, Ringel, J. Appl. Phys. 100, 023709–023708 (2006)

    ADS  Article  Google Scholar 

  47. 47.

    N. Yildirim, K. Ejderha, A. Turut, J. Appl. Phys. 108, 114506–114508 (2010)

    ADS  Article  Google Scholar 

  48. 48.

    S. Arulkumaran, T. Egawa, H. Ishikawa, M. Umeno, T. Jimbo, IEEE 48, 573–580 (2001)

    Google Scholar 

  49. 49.

    Y. Zhou, D. Wang, C. Ahyi, C.C. Tin, J. Williams, M. Park, N.M. Williams, A. Hanser, E.A. Preble, J. Appl. Phys. 101, 024506–024504 (2007)

    ADS  Article  Google Scholar 

  50. 50.

    E.V. Kalinina, N.I. Kuznetsov, V.A. Dmitriev, K.G. Irvine, C.H. Carter, J. Electron. Mater. 25, 831–834 (1996)

    ADS  Article  Google Scholar 

  51. 51.

    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85–87 (1986)

    ADS  Article  Google Scholar 

  52. 52.

    H. Norde, J. Appl. Phys. 50, 5052–5063 (1979)

    ADS  Article  Google Scholar 

  53. 53.

    I. Goykhman, U. Sassi. B. Desiatov, N. Mazurski, S. Milana, D. De Fazio, A. Eiden, J.B. Khurgin, J. Shappir, U. Levy, A.C. Ferrari, Nano Lett. 16, 3005–3013 (2016)

    ADS  Article  Google Scholar 

  54. 54.

    E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan, H.E. Unalan, Appl. Phys. Lett. 103, 083114–083113 (2013)

    ADS  Article  Google Scholar 

  55. 55.

    Y. Jiang, C. Li, W. Cao, Y. Jiang, S. Shang, C. Xia, Phys. Chem. Chem. Phys. 17, 16784–16790 (2015)

    Article  Google Scholar 

  56. 56.

    B.V. Zeghbroeck, Principles of Semiconductor Devices, Chap. 4 (2011)

Download references


The authors are thankful to the Director, CSIR-NAL for his support and encouragement. BRNS (Project No. U-1-125) is thanked for SRF fellowship to K. P. Dr. Bonu Venkataramana for various discussion. We also thank A. Das and R. Pandian of NCSS, SND, IGCAR, for providing the experimental facilities.

Author information



Corresponding author

Correspondence to Harish C. Barshilia.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karadan, P., Parida, S., Kumar, A. et al. Charge transport studies on Si nanopillars for photodetectors fabricated using vapor phase metal-assisted chemical etching. Appl. Phys. A 123, 681 (2017).

Download citation