Applied Physics A

, 123:681 | Cite as

Charge transport studies on Si nanopillars for photodetectors fabricated using vapor phase metal-assisted chemical etching

  • Prajith Karadan
  • Santanu Parida
  • Arvind Kumar
  • Aji A. Anappara
  • Sandip Dhara
  • Harish C. Barshilia
Article
  • 151 Downloads

Abstract

Si nanopillars (SiNPLs) were fabricated using a novel vapor phase metal-assisted chemical etching (V-Mace) and nanosphere lithography. The temperature dependent current–voltage (I–V) characteristics have been studied over a broad temperature range 170–360 K. The SiNPLs show a Schottky diode-like behavior at a temperature below 300 K and the rectification (about two orders of magnitude) is more prominent at temperature < 210 K. The electrical properties are discussed in detail using Cheung’s and Norde methods, and the Schottky diode parameters, such as barrier height, ideality factor, series resistance, are carefully figured out and compared with different methods. Moreover, the light sensitivity of the SiNPLs has been studied using I–V characteristics in dark and under the illumination of white light and UV light. The SiNPLs show fast response to the white light and UV light (response time of 0.18 and 0.26 s) under reverse bias condition and the mechanism explained using band diagram. The ratio of photo-to-dark current shows a peak value of 9.8 and 6.9 for white light and UV light, respectively. The Si nanopillars exhibit reflectance < 4% over the wavelength region 250–800 nm with a minimum reflectance of 2.13% for the optimized sample. The superior light absorption of the SiNPLs induced fast response in the I–V characteristics under UV light and white light. The work function of the SiNPLs in dark and under illumination has been also studied using Kelvin probe to confirm the light sensitivity.

Supplementary material

339_2017_1287_MOESM1_ESM.pptx (761 kb)
Supplementary information The schematic diagram for the etching set up, AFM images of SiNPLs are given in supplementary information. (PPTX 760 KB)

References

  1. 1.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163–168 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, U. Gösele, Small 2, 85–88 (2006)CrossRefGoogle Scholar
  3. 3.
    Y.B. Tang, Z.H. Chen, H.S. Song, C.S. Lee, H.T. Cong, H.M. Cheng, W.J. Zhang, I. Bello, S.T. Lee, Nano Lett. 8, 4191–4195 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    N.P. Dasgupta, J. Sun, C. Liu, S. Brittman, S.C. Andrews, J. Lim, H. Gao, R. Yan, P. Yang, Adv. Mater. 26, 2137–2184 (2014)CrossRefGoogle Scholar
  5. 5.
    B. Kiraly, S. Yang, T. Huang, J. Nanotechnol. 24, 245704–245705 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    J. Bae, H. Kim, X.M. Zhang, C.H. Dang, Y. Zhang, Y.J. Choi, A. Nurmikko, Z.L. Wang, Nanotechnology 21, 095502–095505 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    P. Karadan, A.A. Anappara, V.H.S. Moorthy, N. Chandrabhas, H.C. Barshilia, RSC Adv. 6, 109157–109170 (2016)CrossRefGoogle Scholar
  8. 8.
    L. Tsakalakos, J. Balch, J. Fronheiser, B.A. Korevaar, O. Sulima, J. Rand, J. Nanophoton. 1, 13552–13555 (2007)CrossRefGoogle Scholar
  9. 9.
    N.P. Koboyashi, S.Y. Wang, C. Santori, R.S. Williams, Appl. Phys. A Mater. Sci. Process. 85, 1–6 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Y.L. Chueh, Z.Y. Fan, K. Takei, H. Ko, R. Kapadia, A.A. Rathore, N. Miller, K. Yu, M. Wu, E.E. Haller, A. Javey, Nano Lett. 10, 520–523 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A. Gin, B. Movaghar, M. Razeghi, G.J. Brown, Nanotechnology 16, 1814–1820 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    W. Xu, C.S. Ozkan, Nano Lett. 8, 398–404 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    R. Ghosh, P.K. Giri, K. Imakita, M. Fujii, Nanotechnology 25, 045703–045705 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    X. Zhao, C.M. Wei, L. Yang, M.Y. Chou, Phys. Rev. Lett. 92, 236805-4 (2004)ADSGoogle Scholar
  15. 15.
    S. Grego, K.H. Gilchrist, J.Y. Kim, M.K. Kwon, M.S. Islam, Proc. SPIE 7406, 74060–74069 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    V. Schmidt, J.V. Witteman, S. Senz, U. Gosele, Adv. Mater. 21, 2681–2702 (2009)CrossRefGoogle Scholar
  17. 17.
    V. Gowrishankar, S.R. Scully, A.T. Chan, M.D. McGehee, Q. Wang, H.M.J. Branz, Appl. Phys. 103, 064511–064511 (2008)CrossRefGoogle Scholar
  18. 18.
    W. Wei, X.Y. Bao, C. Soci, Y. Ding, Z.L. Wang, D. Wang, Nano Lett. 9, 2926–2934 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    C.J. Novotny, E.T. Yu, P.K.L. Yu, Nano Lett. 8, 775–779 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    C. Kung, W.E. Van Der Veer, F. Yang, K.C. Donavan, R.M. Penner, Nano Lett. 10, 1481–1485 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    A.D. Bartolomeo, F. Giubileo, G.L. Go, L. Lemmo, N. Martucciello, G. Niu, M. Fraschke, O. Skibitzki. T. Schroeder, G. Lupina, 2D Mater. 4, 01024–01011 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W.P. Hu, W. Chen, Small 37, 4859–4836 (2015)Google Scholar
  23. 23.
    X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, Y. Fang, Small 12, 565–601 (2016)Google Scholar
  24. 24.
    T. Jiao, D. Wei, J. Liu, W. Sun, S. Jia, W. Zhang, Y. Feng, H. Shi, C. Du, RSC Adv. 5, 73202–73206 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, V. Schmidt, S. Senz, U. Gosele, Nat. Nanotechnol. 1, 186–189 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    H. Schmid, M.T. Bjork, J. Knoch, H. Riel, W. Riess, P. Rice, T. Topuria, J. Appl. Phys. 103, 024304–024306 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    K. Omar, Y. Al-Douri, A. Ramizy, Z. Hassan, Superlattices Microstruct. 50, 119–127 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Z. Huang, H. Fang, J. Zhu, Adv. Mater. 19, 744–748 (2007)CrossRefGoogle Scholar
  29. 29.
    P. Karadan, S. John, A.A. Anappara, N. Chandrabhas, H.C. Barshilia, Appl. Phys. A 22, 669–674 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Li, C. Duan, Langmuir 31, 12291–12299 (2015)CrossRefGoogle Scholar
  31. 31.
    K.Q. Peng, Z.P. Huang, J. Zhu, Adv. Mater. 16, 73–76 (2004)CrossRefGoogle Scholar
  32. 32.
    O.J. Hildreth, D.R. Schmidt, Adv. Funct. Mater. 4, 129–126 (2014)Google Scholar
  33. 33.
    A. Kumar, S. Siddhanta, H.C. Barshilia, Sol. Energy 129, 147–155 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    A. Kumar, H. Chaliyawala, S. Siddhanta, H.C. Barshilia, Sol. Energy Mater. Sol. Cells 145, 432–439 (2015)CrossRefGoogle Scholar
  35. 35.
    W.K. Choi, T.H. Liew, M.K. Dawood., H.I. Smith, C.V. Thompson, M.H. Hong, Nano Lett. 8, 3799–3802 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    Z.P. Huang, Y. Wu, H. Fang, J. Zhu, Nanotechnology 17, 3768–3774 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    A. Kumar, S. Samantha, S. Latha, A.K. Debnath, A. Singh, K.P. Muthe, H.C. Barshia, RSC Adv. 7, 4135–4143 (2017)CrossRefGoogle Scholar
  38. 38.
    O.Y. Olikh, J. Appl. Phys 118, 024502 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    R. Padma, V.R. Reddy, Adv. Mater. Lett. 5, 31–38 (2014)CrossRefGoogle Scholar
  40. 40.
    S. Yilmaz, E. Bacaksiz, I. Polat, Y. Atasoy, Curr. Appl. Phys. 12, 1326–1333 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles (Springer, Berlin, 2003)Google Scholar
  42. 42.
    S. Karatas, S. Altindal, Sol. Stat. Electron. 49, 1052 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    A. Gumus, A. Turut, N. Yalcin, J. Appl. Phys. 91, 245 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    J.H. Werner, H.H. Guttler, J. Appl. Phys. 73, 1315 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522–1533 (1991)ADSCrossRefGoogle Scholar
  46. 46.
    A.R. Arehart, B. Moran, J.S. Speck, J.S. Mishra, S.P. Den, S.A. Baars, Ringel, J. Appl. Phys. 100, 023709–023708 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    N. Yildirim, K. Ejderha, A. Turut, J. Appl. Phys. 108, 114506–114508 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    S. Arulkumaran, T. Egawa, H. Ishikawa, M. Umeno, T. Jimbo, IEEE 48, 573–580 (2001)Google Scholar
  49. 49.
    Y. Zhou, D. Wang, C. Ahyi, C.C. Tin, J. Williams, M. Park, N.M. Williams, A. Hanser, E.A. Preble, J. Appl. Phys. 101, 024506–024504 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    E.V. Kalinina, N.I. Kuznetsov, V.A. Dmitriev, K.G. Irvine, C.H. Carter, J. Electron. Mater. 25, 831–834 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85–87 (1986)ADSCrossRefGoogle Scholar
  52. 52.
    H. Norde, J. Appl. Phys. 50, 5052–5063 (1979)ADSCrossRefGoogle Scholar
  53. 53.
    I. Goykhman, U. Sassi. B. Desiatov, N. Mazurski, S. Milana, D. De Fazio, A. Eiden, J.B. Khurgin, J. Shappir, U. Levy, A.C. Ferrari, Nano Lett. 16, 3005–3013 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan, H.E. Unalan, Appl. Phys. Lett. 103, 083114–083113 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Jiang, C. Li, W. Cao, Y. Jiang, S. Shang, C. Xia, Phys. Chem. Chem. Phys. 17, 16784–16790 (2015)CrossRefGoogle Scholar
  56. 56.
    B.V. Zeghbroeck, Principles of Semiconductor Devices, Chap. 4 (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Prajith Karadan
    • 1
    • 3
  • Santanu Parida
    • 2
  • Arvind Kumar
    • 1
  • Aji A. Anappara
    • 3
  • Sandip Dhara
    • 2
  • Harish C. Barshilia
    • 1
  1. 1.Nanomaterials Research Laboratory, Surface Engineering DivisionCSIR-National Aerospace LaboratoriesBangaloreIndia
  2. 2.Nanomaterials, Characterization and Sensors Section, Surface and Nanoscience Division, Indira Gandhi Center for Atomic ResearchHomi Bhabha National InstituteKalpakkamIndia
  3. 3.Department of PhysicsNational Institute of TechnologyCalicutIndia

Personalised recommendations