Skip to main content
Log in

The preparation of CuS/TiO2 nanotube arrays with high-active under visible light by ultrasonic-assisted hydrothermal method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrasound provided a good dispersion of CuS on TiO2NTs. In order to prepare CuS/TiO2NTs with a good heterostructure, the CuS particles must establish contact with TiO2NTs uniformly. The hydrothermal process was divided into two phases, and different times of ultrasound were introduced before each stage. The effects of ultrasonic-assisted hydrothermal method on the structure and photoelectric properties of CuS/TiO2NTs were investigated by SEM, XRD, photocurrent, and degradation of MB. The results show that the introduction of ultrasound before the hydrothermal treatment can cause damage to the TiO2NTs. However, the ultrasound between the two hydrothermal stages makes CuS distributed in the TiO2NTs uniformly, and the amount of CuS can be increased. The photocurrent reaches 32 mA/cm2 at 1.5 V, and meanwhile the photocatalytic activity under visible light is also improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Ya, N. Yang, F. Hu, Z. Liu, J. Sol-Gel. Technol. 73, 322–331 (2015)

    Article  Google Scholar 

  2. Z. Wan, G.-F. Huang, W.-Q. Huang, C. Jiao, X.-G. Yan, Z.-M. Yang, Q. Zhang, The enhanced photocatalytic activity of Ti3+ self-doped TiO2 by a reduction method. Mater. Lett. 122, 33–36 (2014)

    Article  Google Scholar 

  3. J. Zhang, G.-F. Huang, D. Li et al., Facile route to fabricate carbon-doped TiO2 nanoparticles and its mechanism of enhanced visible light photocatalytic activity. Appl. Phys. A 122(12), 994 (2016)

    Article  ADS  Google Scholar 

  4. Y.-C. Yang, W.-Q. Huang, L. Xu, W. Hu, P. Peng, G.-F. Huang, Hybrid TiO2/graphene derivatives nanocomposites: is functionalized graphene better than pristine graphene for enhanced photocatalytic activity? Catal. Sci. Technol. 7(6), 1423–1432 (2017)

    Article  Google Scholar 

  5. Z.-L. Ma, G.-F. Huang, D.-S. Xu, M.-G. Xia, W.-Q. Huang, Y. Tian, Coupling effect of La doping and porphyrin sensitization on photocatalytic activity of nanocrystalline TiO2. Mater. Lett. 108, 37–40 (2013)

    Article  Google Scholar 

  6. Q. Wang, G. Yun, Y. Bai, N. An, Y. Chen, R. Wang, Z. Lei, W. Shangguan, CuS, NiS as co-catalyst for enhanced photocatalytic hydrogen evolution over TiO2. Int. J. Hydrog. Energy 39(25), 13421–13428 (2014)

    Article  Google Scholar 

  7. S. Yu, J. Liu, Y. Zhou, R.D. Webster, X. Yan, Effect of synthesis method on the nanostructure and solar-driven photocatalytic properties of TiO2–CuS composites. ACS Sustain. Chem. Eng. 5(2), 1347–1357 (2017)

    Article  Google Scholar 

  8. Y. Im, S. Kang, K.M. Kim et al., Dynamic hydrogen production from methanol/water photo-splitting using core@shell-structured CuS@TiO2 catalyst wrapped by high concentrated TiO2 particles. Int. J. Photoenergy 2013, 9714–9722 (2013)

    Article  Google Scholar 

  9. Q. Wang, N. An, Y. Bai, H. Hang, J. Li, X. Lu, Y. Liu, F. Wang, Z. Li, Z. Lei, High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2. Int. J. Hydrog. Energy 38(25), 10739–10745 (2013)

    Article  Google Scholar 

  10. Y. Im, B.S. Kwak, M. Kang, Synthesis of egg-shaped core–shell structured CuS–TiO2 particle and its thermal stability. Powder Technol. 267, 103–110 (2014)

    Article  Google Scholar 

  11. Y. Hou, X.Y. Li, Q.D. Zhao et al. J. Appl. Phys. Lett 95(9), 093108–093108-3 (2009)

  12. J. Lv, H. Wang, H. Gao et al., J. Surf. Coat. Technol. 261(261), 356–363 (2015)

    Article  Google Scholar 

  13. M.N. Van, W. Li, P. Sheng et al., J. Electroanal. Chem. 736, 69–75 (2014)

    Google Scholar 

  14. Z. Huang, X. Wen, X. Xiao, Photoelectrochemical properties of CuS–TiO2 composite coating electrode and its preparation via electrophoretic deposition. J. Electrochem. Soc. 158(12), H1247–H1251 (2011)

    Article  Google Scholar 

  15. C. Ratanatawanate, A. Bui, K. Vu, K.J. Balkus Jr., Low-temperature synthesis of copper(II) sulfide quantum dot decorated TiO2 nanotubes and their photocatalytic properties. J. Phys. Chem. C 115(14), 6175–6180 (2011)

    Article  Google Scholar 

  16. H.Y. He, Facile synthesis of ultrafine CuS nanocrystalline/TiO2:Fe nanotubes hybrids and their photocatalytic and Fenton-like photocatalytic activities in the dye degradation. Microporous. Mesoporous. Mater. 227, 31–38 (2016)

    Article  Google Scholar 

  17. G. Hou, Z. Cheng, L. Kang, X. Xu, F. Zhang, H. Yang, Controllable synthesis of CuS decorated TiO2 nanofibers for enhanced photocatalysis. CrystEngComm 17(29), 5496–5501 (2015)

    Article  Google Scholar 

  18. Y.Y. Lu, Y.Y. Zhang, J. Zhang, Y. Shi, Z. Li, Z.C. Feng, C. Li, In situ loading of CuS nanoflowers on rutile TiO2 surface and their improved photocatalytic performance. Appl. Surf. Sci. 370, 312–319 (2016)

    Article  ADS  Google Scholar 

  19. K. Manjunath, V.S. Souza, G. Nagaraju, J.M.L. Santos, J. Dupont, T. Ramakrishnappa, Superior activity of the CuS–TiO2/Pt hybrid nanostructure towards visible light induced hydrogen production. N. J. Chem. 40(12), 10172–10180 (2016)

    Article  Google Scholar 

  20. M. Ahmadi, S.R. Dafeh, J. Indian J. Phys. 90(8), 895–901 (2016)

    Article  ADS  Google Scholar 

  21. X.H. Yang, Q. Tong, C. Liu, J.K. Liu, W.Z. He, G.-M. Li, Acta Phys. Chim. Sin. 28(11), 2713–2720 (2012)

    Google Scholar 

  22. L.X. Li, Y. Jing, F. Hu et al., J. Energy. Chem. 25(4), 740–746 (2016)

    Article  Google Scholar 

  23. T.Y. Ding, M.S. Wang, S.P. Guo, G.C. Guo, J.S. Huang, Mater. Lett. 62, 4529 (2008)

    Article  Google Scholar 

  24. W.G. Chang, Y.H. Shen, A.J. Xie, H. Zhang, J. Wang, W.S. Lu, J. Colloid Interface Sci. 33, 257–263 (2009)

    Article  ADS  Google Scholar 

  25. Y. Cong, J.L. Zhang, F. Chen, M. Anpo, J. Phys. Chem. C 111, 6976–6982 (2007)

    Article  Google Scholar 

  26. D.C. Pan, Q. Wang, J.B. Pang, S.C. Jiang, X.L. Ji, L.J. An, J. Chem. Mater. 18, 4253–4258 (2006)

    Article  Google Scholar 

  27. M.A. Fox, M.T. Dulay, Chem. Rev. 93, 341–357 (1993)

    Article  Google Scholar 

  28. S. Khanchandani, S. Kundu, A. Patra, A.K. Ganguli, J. Phys. Chem. C 116, 23653–23662 (2012)

    Article  Google Scholar 

  29. T.J. Liu, Q. Wang, P. Jiang, RSC Adv. 3, 12662–12670 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Tianjin Science and Technology Support Plan Key Projects (No. 12ZCZDJC35600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ya, J., Xiang, L. et al. The preparation of CuS/TiO2 nanotube arrays with high-active under visible light by ultrasonic-assisted hydrothermal method. Appl. Phys. A 123, 667 (2017). https://doi.org/10.1007/s00339-017-1281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1281-y

Navigation