Skip to main content
Log in

Melting and thermal ablation of a silver film induced by femtosecond laser heating: a multiscale modeling approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The femtosecond laser pulse heating of silver film is investigated by performing quantum mechanics (QM), molecular dynamics (MD), and two-temperature model (TTM) integrated multiscale simulation. The laser excitation dependent electron thermophysical parameters (electron heat capacity, electron thermal conductivity, and effective electron–phonon coupling factor) are determined from ab initio QM calculation, and implemented into TTM description of electron thermal excitation, heat conduction, as well as electron–phonon coupled thermal energy transport. The kinetics of atomic motion is modeled by MD simulation. Energy evolution of excited electron subsystem is described by TTM in continuum. The MD and TTM are coupled by utilizing the effective electron–phonon coupling factor. Laser heating with varying laser fluences is systematically studied to determine the thresholds of homogeneous melting and ablation. The thermal ablation induced by rapid expansion of locally and excessively superheated silver is reported. This paper provides a basis for interpreting the phase-change process induced by laser heating, and facilitates the advancement of femtosecond laser pulse processing of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Material constant describing the electron–electron scattering rate (s−1 K−2)

B :

Material constant describing the electron–phonon scattering rate (s−1 K−1)

C e :

Electron heat capacity (J/(m3K))

E :

Energy (J)

f :

Fermi–Dirac distribution function

g :

Electron density of states

G e–ph :

Effective electron-phonon coupling factor (W/(m3K))

J :

Laser fluence (J/cm2)

k :

Thermal conductivity (W/(mK))

k B :

Boltzmann constant (1.38 × 10−23 J/K)

m :

Mass (kg)

L :

Penetrating depth (m)

q :

Heat flux (W/m2)

\(\varvec{r}_{\varvec{i}}\) :

Position of an atom (m)

t :

Time (s)

T :

Temperature (K)

v :

Velocity (m/s)

V c :

Volume of unit cell (m3)

ɛ :

Electron energy level (J)

μ :

Chemical potential (J)

λ〈ω2〉:

Second moment of the electron–phonon spectral function (meV2)

ρ :

Density (kg/m3)

τ e :

Total electron scattering time (s)

τ xx :

Thermal stress (GPa)

ba:

Ballistic transport

\(e\) :

Electron

F :

Fermi level

\(l\) :

Lattice

op:

Optical penetration

p :

Laser pulse

References

  1. A. Jansen, F. Mueller, P. Wyder, Direct measurement of electron-phonon coupling α^{2}F(ω) using point contacts: noble metals. Phys. Rev. B. 16,1325–1328 (1977). doi:10.1103/PhysRevB.16.1325

  2. L.A. Dobrzański, A. Drygała, K. Gołombek, P. Panek, E. Bielańska, P. Zięba, Laser surface treatment of multicrystalline silicon for enhancing optical properties. J. Mater. Process. Technol. 201, 291–296 (2008). doi:10.1016/j.jmatprotec.2007.11.278

    Article  Google Scholar 

  3. J.K. Chen, D.Y. Tzou, J.E. Beraun, A semiclassical two-temperature model for ultrafast laser heating. Int. J. Heat Mass Transf. 49, 307–316 (2006). doi:10.1016/j.ijheatmasstransfer.2005.06.022

    Article  MATH  Google Scholar 

  4. Y. Zhang, J.K. Chen, An interfacial tracking method for ultrashort pulse laser melting and resolidification of a thin metal film. J. Heat Transfer. 130, 62401 (2008). doi:10.1115/1.2891159

    Article  Google Scholar 

  5. K. Sugioka, J. Xu, D. Wu, Y. Hanada, Z. Wang, Y. Cheng, K. Midorikawa, Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab. Chip. 14, 3447–3458 (2014). doi:10.1039/C4LC00548A

    Article  Google Scholar 

  6. J. Cheng, C. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, K. Watkins, A review of ultrafast laser materials micromachining. Opt. Laser Technol. 46, 88–102 (2013). doi:10.1016/j.optlastec.2012.06.037

    Article  ADS  Google Scholar 

  7. B. M. Smirnov, Fermi–Dirac distribution, in Princ. Stat. Phys. (Wiley-VCH Verlag GmbH & Co. KGaA, 2007), pp. 57–73. doi:10.1002/9783527608089.ch4

  8. Z. Lin, L.V. Zhigilei, V. VCelli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys. Rev. B. 77, 75133 (2008). doi:10.1103/PhysRevB.77.075133

    Article  ADS  Google Scholar 

  9. E. Bevillon, J.P. Colombier, V. Recoules, R. Stoian, First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals. Appl. Surf. Sci. 336, 79–84 (2015). doi:10.1016/j.apsusc.2014.09.146

    Article  ADS  Google Scholar 

  10. P. Ji, Y. Zhang, Ab initio determination of effective electron–phonon coupling factor in copper. Phys. Lett. A 380, 1551–1555 (2016). doi:10.1016/j.physleta.2016.02.044

    Article  ADS  Google Scholar 

  11. P. Ji, Y. Zhang, Continuum-atomistic simulation of picosecond laser heating of copper with electron heat capacity from ab initio calculation. Chem. Phys. Lett. 648, 109–113 (2016). doi:10.1016/j.cplett.2016.02.003

    Article  ADS  Google Scholar 

  12. P. Ji, Y. Zhang, Electron–phonon coupled heat transfer and thermal response induced by femtosecond laser heating of gold. J. Heat Transfer 139, 52001–52006 (2017). doi:10.1115/1.4035248

    Article  Google Scholar 

  13. T.M. Tritt, Thermal conductivity: theory, properties, and applications (Springer Science & Business Media, New York, 2004)

    Book  Google Scholar 

  14. P. Ji, Y. Zhang, Multiscale modeling of femtosecond laser irradiation on copper film with electron thermal conductivity from ab initio calculation. Numer. Heat Transf. Part A Appl. 71, 128–136 (2017). doi:10.1080/10407782.2016.1257305

    Article  ADS  Google Scholar 

  15. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel-man, Electron emission from metal surfaces exposed to ultrashort laser pulses. J. Exp. Theor. Phys. 66, 375–377 (1974)

    ADS  Google Scholar 

  16. T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals. J. Heat Transfer 115, 835–841 (1993). doi:10.1115/1.2911377

    Article  Google Scholar 

  17. Y. Mao, M. Xu, Lattice Boltzmann numerical analysis of heat transfer in nano-scale silicon films induced by ultra-fast laser heating. Int. J. Therm. Sci. 89, 210–221 (2015). doi:10.1016/j.ijthermalsci.2014.11.004

    Article  Google Scholar 

  18. D.Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transfer 117, 8–16 (1995). doi:10.1115/1.2822329

    Article  Google Scholar 

  19. J. Huang, Y. Zhang, J.K. Chen, Ultrafast solid–liquid–vapor phase change of a gold film induced by pico- to femtosecond lasers. Appl. Phys. A 95, 643–653 (2009). doi:10.1007/s00339-009-5156-8

    Article  ADS  Google Scholar 

  20. P. Ji, Y. Zhang, Femtosecond laser processing of germanium: an ab initio molecular dynamics study. J. Phys. D Appl. Phys. 46, 495108 (2013). doi:10.1088/0022-3727/46/49/495108

    Article  Google Scholar 

  21. C. Yang, Y. Wang, X. Xu, Molecular dynamics studies of ultrafast laser-induced phase and structural change in crystalline silicon. Int. J. Heat Mass Transf. 55, 6060–6066 (2012). doi:10.1016/j.ijheatmasstransfer.2012.06.018

    Article  Google Scholar 

  22. D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B. 68, 64114 (2003). doi:10.1103/PhysRevB.68.064114

    Article  ADS  Google Scholar 

  23. Y. Gan, J.K. Chen, An atomic-level study of material ablation and spallation in ultrafast laser processing of gold films. J. Appl. Phys. 108, 103102 (2010). doi:10.1063/1.3504192

    Article  ADS  Google Scholar 

  24. S. Sonntag, J. Roth, F. Gaehler, H.R. Trebin, Femtosecond laser ablation of aluminium. Appl. Surf. Sci. 255, 9742–9744 (2009). doi:10.1016/j.apsusc.2009.04.062

    Article  ADS  Google Scholar 

  25. Y. Rosandi, H.M. Urbassek, Melting of Al by ultrafast laser pulses: dynamics at the melting threshold. Appl. Phys. A Mater. Sci. Process. 110, 649–654 (2013). doi:10.1007/s00339-012-7145-6

    Article  ADS  Google Scholar 

  26. P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Structural, dynamical, electronic, and bonding properties of laser-heated silicon: an ab initio molecular-dynamics study. Phys. Rev. B. 56, 3806–3812 (1997). doi:10.1103/PhysRevB.56.3806

    Article  ADS  Google Scholar 

  27. P. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Ab initio Molecular Dynamics Simulation of Laser Melting of Silicon. Phys. Rev. Lett. 77, 3149–3152 (1996). doi:10.1103/PhysRevLett.77.3149

  28. P. Ji, Y. Zhang, M. Yang, Structural, dynamic, and vibrational properties during heat transfer in Si/Ge superlattices: a Car-Parrinello molecular dynamics study. J. Appl. Phys. 114, 234905 (2013). doi:10.1063/1.4850935

    Article  ADS  Google Scholar 

  29. P. Ji, Y. Zhang, First-principles molecular dynamics investigation of the atomic-scale energy transport: from heat conduction to thermal radiation. Int. J. Heat Mass Transf. 60, 69–80 (2013). doi:10.1016/j.ijheatmasstransfer.2012.12.051

    Article  Google Scholar 

  30. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)

    MATH  Google Scholar 

  31. M.I. Kaganov, I.M. Lifshitz, L.V. Tanatarov, Relaxation between Electrons and the Crystalline Lattice. J. Exp. Theor. Phys. 4, 173–178 (1957). doi:10.1017/CBO9781107415324.004

    MATH  Google Scholar 

  32. J.K. Chen, W.P. Latham, J.E. Beraun, The role of electron–phonon coupling in ultrafast laser heating. J. Laser Appl. 17, 63 (2005). doi:10.1017/CBO9781107415324.004

    Article  Google Scholar 

  33. P.B. Allen, Theory of thermal relaxation of electrons in metals. Phys. Rev. Lett. 59, 1460–1463 (1987). doi:10.1103/PhysRevLett.59.1460

    Article  ADS  Google Scholar 

  34. X.Y. Wang, D.M. Riffe, Y.-S. Lee, M.C. Downer, Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. Phys. Rev. B. 50, 8016–8019 (1994). doi:10.1017/CBO9781107415324.004

    Article  ADS  Google Scholar 

  35. D. Bäuerle, Laser processing and chemistry (2011). doi:10.1007/978-3-642-17613-5

    Article  Google Scholar 

  36. T.F. Chant, Stability analysis of finite difference schemes for the Advection–diffusion equation. SIAM J. Numer. Anal. 21, 272–284 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  37. H.W. Sheng, M.J. Kramer, A. Cadien, T. Fujita, M.W. Chen, Highly optimized embedded-atom-method potentials for fourteen FCC metals. Phys. Rev. B. (2011). doi:10.1103/PhysRevB.83.134118

    Google Scholar 

  38. J. Stadler, R. Mikulla, H. Trebin, IMD: a software package for molecular dynamics studies on parallel computers. Int. J. Mod. Phys. C. 8, 1131–1140 (1997). doi:10.1142/S0129183197000990

    Article  ADS  Google Scholar 

  39. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D.R.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J.J. Verstraete, G. Zerah, J.W.W. Zwanziger, ABINIT: first-principles approach to material and nanosystem properties. Comput. Phys. Commun. 180, 2582–2615 (2009). doi:10.1016/j.cpc.2009.07.007

    Article  ADS  Google Scholar 

  40. V. Recoules, J. Clérouin, G. Zérah, P.M.M. Anglade, S. Mazevet, Effect of intense laser irradiation on the lattice stability of semiconductors and metals. Phys. Rev. Lett. 96, 55503 (2006). doi:10.1103/PhysRevLett.96.055503

    Article  ADS  Google Scholar 

  41. D. E. Gray, American Institute of Physics Handbook, 3rd edn. (McGraw-Hill, New York, 1972)

    MATH  Google Scholar 

  42. P.B. Allen, Empirical electron phonon lumbda values from resistivity of cubic metallic elements. Phys. Rev. B. 36, 2920–2923 (1987). doi:10.1103/PhysRevB.36.2920

    Article  ADS  Google Scholar 

  43. R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys. Rev. B. 51, 11433–11445 (1995). doi:10.1103/PhysRevB.51.11433

    Article  ADS  Google Scholar 

  44. Y. Yang, Z. Chen, Y. Zhang, Melt flow and heat transfer in laser drilling. Int. J. Therm. Sci. 107, 141–152 (2016). doi:10.1016/j.ijthermalsci.2016.04.006

    Article  Google Scholar 

  45. F.H. Stillinger, T.A. Weber, Lindemann melting criterion and the Gaussian core model. Phys. Rev. B. 22, 3790–3794 (1980). doi:10.1103/PhysRevB.22.3790

    Article  ADS  Google Scholar 

  46. J.D. Honeycutt, H.C. Andemen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987). doi:10.1021/j100303a014

    Article  Google Scholar 

  47. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 15012 (2010). http://stacks.iop.org/0965-0393/18/i=1/a=015012

  48. B.J. Siwick, An atomic-level view of melting using femtosecond electron diffraction. Science 302, 1382–1385 (2003). doi:10.1126/science.1090052

    Article  ADS  Google Scholar 

  49. M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, Oxford, 1987)

    MATH  Google Scholar 

  50. L.V. Zhigilei, B.J. Garrison, Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes. J. Appl. Phys. 88, 1281–1298 (2000). doi:10.1063/1.373816

    Article  ADS  Google Scholar 

  51. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Photomechanical spallation of molecular and metal targets: molecular dynamics study. Appl. Phys. A Mater. Sci. Process. 79, 1643–1655 (2004). doi:10.1007/s00339-004-2682-2

    ADS  Google Scholar 

  52. L.V.L. Zhigilei, Z. Lin, D.S.D. Ivanov, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J. Phys. Chem. C 113, 11892–11906 (2009). doi:10.1021/jp902294m

    Article  Google Scholar 

Download references

Acknowledgements

Support for this work by the U.S. National Science Foundation under Grant Number CBET-133611 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, P., Zhang, Y. Melting and thermal ablation of a silver film induced by femtosecond laser heating: a multiscale modeling approach. Appl. Phys. A 123, 671 (2017). https://doi.org/10.1007/s00339-017-1269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1269-7

Navigation